

 GameServer

 v1.0.509

 Table of contents

 	
 Modules

 	GameServer

 	GameServer.Accounts

 	GameServer.Accounts.Scope

 	GameServer.Accounts.User

 	GameServer.Accounts.UserNotifier

 	GameServer.Accounts.UserToken

 	GameServer.Apple

 	GameServer.Async

 	GameServer.Cache

 	GameServer.Cache.L1

 	GameServer.Cache.L2.Partitioned

 	GameServer.Cache.L2.Partitioned.Primary

 	GameServer.Cache.L2.Redis

 	GameServer.Env

 	GameServer.Friends

 	GameServer.Friends.Friendship

 	GameServer.Hooks

 	GameServer.Hooks.Default

 	GameServer.Hooks.DynamicRpcs

 	GameServer.Hooks.PluginBuilder

 	GameServer.Hooks.PluginManager

 	GameServer.Hooks.PluginManager.Plugin

 	GameServer.KV

 	GameServer.Leaderboards

 	GameServer.Leaderboards.Leaderboard

 	GameServer.Leaderboards.Record

 	GameServer.Lobbies

 	GameServer.Lobbies.Lobby

 	GameServer.Mailer

 	GameServer.OAuth.Exchanger

 	GameServer.OAuth.GoogleIDToken

 	GameServer.OAuthSession

 	GameServer.OAuthSessions

 	GameServer.Repo

 	GameServer.Schedule

 	GameServer.Schedule.Lock

 	GameServer.Schedule.Scheduler

 	GameServer.Theme

 	GameServer.Theme.JSONConfig

 	GameServer.Types

 	
 Mix Tasks

 	mix gen.sdk

GameServer

GameServer keeps the contexts that define your domain
and business logic.
Contexts are also responsible for managing your data, regardless
if it comes from the database, an external API or others.

GameServer.Accounts

The Accounts context.
Usage
Lookup by id or email
user = GameServer.Accounts.get_user(123)
user = GameServer.Accounts.get_user_by_email("me@example.com")

Update a user
{:ok, user} = GameServer.Accounts.update_user(user, %{display_name: "NewName"})

Search (paginated) and count
users = GameServer.Accounts.search_users("bob", page: 1, page_size: 25)
count = GameServer.Accounts.count_search_users("bob")

 Summary

 Functions

 attach_device_to_user(user, device_id)

 Attach a device_id to an existing user record. Returns {:ok, user} or
{:error, changeset} if the device_id is already used.

 broadcast_user_update(user)

 Broadcast that the given user has been updated.

 change_user_display_name(user, attrs \\ %{})

 Returns an %Ecto.Changeset{} for changing the user display_name.

 change_user_email(user, attrs \\ %{}, opts \\ [])

 Returns an %Ecto.Changeset{} for changing the user email.

 change_user_password(user, attrs \\ %{}, opts \\ [])

 Returns an %Ecto.Changeset{} for changing the user password.

 change_user_registration(user, attrs \\ %{})

 confirm_user(user)

 Confirms a user's email by setting confirmed_at timestamp.

 confirm_user_by_token(token)

 Confirm a user by an email confirmation token (context: "confirm").

 count_search_users(query)

 Count users matching a text query (email or display_name). Returns integer.

 count_users()

 Returns the total number of users.

 count_users_active_since(days)

 Count users active in the last N days.

 count_users_registered_since(days)

 Count users registered in the last N days.

 count_users_with_password()

 Count users with a password set (hashed_password not nil/empty).

 count_users_with_provider(provider_field)

 Count users with non-empty provider id for a given provider field (e.g. :google_id)

 delete_user(user)

 Deletes a user and associated resources.

 delete_user_session_token(token)

 Deletes the signed token with the given context.

 deliver_login_instructions(user, magic_link_url_fun)

 Delivers the magic link login instructions to the given user.

 deliver_user_confirmation_instructions(user, confirmation_url_fun)

 deliver_user_update_email_instructions(user, current_email, update_email_url_fun)

 Delivers the update email instructions to the given user.

 device_auth_enabled?()

 Returns true when device-based auth is enabled. This checks the
application config :game_server, :device_auth_enabled and falls back
to the environment variable DEVICE_AUTH_ENABLED. If neither
is set, device auth is enabled by default.

 find_or_create_from_apple(attrs)

 Finds a user by Apple ID or creates a new user from OAuth data.

 find_or_create_from_device(device_id, attrs \\ %{})

 Finds or creates a user associated with the given device_id.

 find_or_create_from_discord(attrs)

 Finds a user by Discord ID or creates a new user from OAuth data.

 find_or_create_from_facebook(attrs)

 Finds a user by Facebook ID or creates a new user from OAuth data.

 find_or_create_from_google(attrs)

 Finds a user by Google ID or creates a new user from OAuth data.

 find_or_create_from_steam(attrs)

 Finds a user by Steam ID or creates a new user from Steam OpenID data.

 generate_user_session_token(user)

 Generates a session token.

 get_linked_providers(user)

 Returns a map of linked OAuth providers for the user.

 get_user(id)

 Gets a single user by ID.

 get_user!(id)

 Gets a single user.

 get_user_by_apple_id(apple_id)

 Get a user by their Apple ID.

 get_user_by_discord_id(discord_id)

 Get a user by their Discord ID.

 get_user_by_email(email)

 Gets a user by email.

 get_user_by_email_and_password(email, password)

 Gets a user by email and password.

 get_user_by_facebook_id(facebook_id)

 Get a user by their Facebook ID.

 get_user_by_google_id(google_id)

 Get a user by their Google ID.

 get_user_by_magic_link_token(token)

 Gets the user with the given magic link token.

 get_user_by_session_token(token)

 Gets the user with the given signed token.

 get_user_by_steam_id(steam_id)

 Get a user by their Steam ID (steam_id).

 has_password?(user)

 Returns whether the user has a password set.

 link_account(user, attrs, provider_id_field, changeset_fn)

 Link an OAuth provider to an existing user account. Updates the user
via the provider's oauth changeset while being careful not to overwrite
existing email or avatars.

 link_device_id(user, device_id)

 Link a device_id to an existing user account. This allows the user to
authenticate using the device_id in addition to their OAuth providers.

 login_user_by_magic_link(token)

 Logs the user in by magic link.

 register_user(attrs)

 Registers a user.

 register_user_and_deliver(attrs, confirmation_url_fun, notifier \\ GameServer.Accounts.UserNotifier)

 Register a user and send the confirmation email inside a DB transaction.

 search_users(query, opts \\ [])

 Search users by email or display name (case-insensitive, partial match).

 sudo_mode?(user, minutes \\ -20)

 Checks whether the user is in sudo mode.

 unlink_device_id(user)

 Unlink the device_id from a user's account.

 unlink_provider(user, provider)

 Unlink an OAuth provider from a user's account.

 update_user(user, attrs)

 Updates a user with the given attributes.

 update_user_display_name(user, attrs)

 Updates the user's display name and broadcasts the change.

 update_user_email(user, token)

 Updates the user email using the given token.

 update_user_password(user, attrs)

 Updates the user password.

 Functions

 attach_device_to_user(user, device_id)

 @spec attach_device_to_user(GameServer.Accounts.User.t(), String.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Attach a device_id to an existing user record. Returns {:ok, user} or
{:error, changeset} if the device_id is already used.

 broadcast_user_update(user)

 @spec broadcast_user_update(GameServer.Accounts.User.t()) :: :ok

Broadcast that the given user has been updated.
This helper is intentionally small and only broadcasts a compact payload
intended for client consumption through the user:<id> topic.

 change_user_display_name(user, attrs \\ %{})

 @spec change_user_display_name(GameServer.Accounts.User.t(), map()) ::
 Ecto.Changeset.t()

Returns an %Ecto.Changeset{} for changing the user display_name.

 change_user_email(user, attrs \\ %{}, opts \\ [])

 @spec change_user_email(GameServer.Accounts.User.t(), map(), keyword()) ::
 Ecto.Changeset.t()

Returns an %Ecto.Changeset{} for changing the user email.
See GameServer.Accounts.User.email_changeset/3 for a list of supported options.
Examples
iex> change_user_email(user)
%Ecto.Changeset{data: %User{}}

 change_user_password(user, attrs \\ %{}, opts \\ [])

 @spec change_user_password(GameServer.Accounts.User.t(), map(), keyword()) ::
 Ecto.Changeset.t()

Returns an %Ecto.Changeset{} for changing the user password.
See GameServer.Accounts.User.password_changeset/3 for a list of supported options.
Examples
iex> change_user_password(user)
%Ecto.Changeset{data: %User{}}

 change_user_registration(user, attrs \\ %{})

 @spec change_user_registration(GameServer.Accounts.User.t(), map()) ::
 Ecto.Changeset.t()

 confirm_user(user)

 @spec confirm_user(GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Confirms a user's email by setting confirmed_at timestamp.
Examples
iex> confirm_user(user)
{:ok, %User{}}

 confirm_user_by_token(token)

 @spec confirm_user_by_token(String.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, :invalid | :not_found}

Confirm a user by an email confirmation token (context: "confirm").
Returns {:ok, user} when the token is valid and user was confirmed.
Returns {:error, :not_found} or {:error, :expired} when token is invalid/expired.

 count_search_users(query)

 @spec count_search_users(String.t()) :: non_neg_integer()

Count users matching a text query (email or display_name). Returns integer.

 count_users()

 @spec count_users() :: non_neg_integer()

Returns the total number of users.

 count_users_active_since(days)

 @spec count_users_active_since(integer()) :: non_neg_integer()

Count users active in the last N days.
This metric is based on users.updated_at (any user record update,
including registration/creation), so it reflects all users and not just
session-token based authentication.

 count_users_registered_since(days)

 @spec count_users_registered_since(integer()) :: non_neg_integer()

Count users registered in the last N days.

 count_users_with_password()

 @spec count_users_with_password() :: non_neg_integer()

Count users with a password set (hashed_password not nil/empty).

 count_users_with_provider(provider_field)

 @spec count_users_with_provider(atom()) :: non_neg_integer()

Count users with non-empty provider id for a given provider field (e.g. :google_id)

 delete_user(user)

 @spec delete_user(GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Deletes a user and associated resources.
Returns {:ok, user} on success or {:error, changeset} on failure.

 delete_user_session_token(token)

 @spec delete_user_session_token(binary()) :: :ok

Deletes the signed token with the given context.

 deliver_login_instructions(user, magic_link_url_fun)

 @spec deliver_login_instructions(GameServer.Accounts.User.t(), (String.t() ->
 String.t())) ::
 {:ok, Swoosh.Email.t()} | {:error, term()}

Delivers the magic link login instructions to the given user.

 deliver_user_confirmation_instructions(user, confirmation_url_fun)

 @spec deliver_user_confirmation_instructions(
 GameServer.Accounts.User.t(),
 (String.t() -> String.t())
) ::
 {:ok, Swoosh.Email.t()} | {:error, :already_confirmed | term()}

 deliver_user_update_email_instructions(user, current_email, update_email_url_fun)

 @spec deliver_user_update_email_instructions(
 GameServer.Accounts.User.t(),
 String.t(),
 (String.t() -> String.t())
) :: {:ok, Swoosh.Email.t()} | {:error, term()}

Delivers the update email instructions to the given user.
Examples
iex> deliver_user_update_email_instructions(user, current_email, &url(~p"/users/settings/confirm-email/#{&1}"))
{:ok, %{to: ..., body: ...}}

 device_auth_enabled?()

 @spec device_auth_enabled?() :: boolean()

Returns true when device-based auth is enabled. This checks the
application config :game_server, :device_auth_enabled and falls back
to the environment variable DEVICE_AUTH_ENABLED. If neither
is set, device auth is enabled by default.

 find_or_create_from_apple(attrs)

 @spec find_or_create_from_apple(map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Finds a user by Apple ID or creates a new user from OAuth data.
Examples
iex> find_or_create_from_apple(%{apple_id: "123", email: "user@example.com"})
{:ok, %User{}}

 find_or_create_from_device(device_id, attrs \\ %{})

 @spec find_or_create_from_device(String.t(), map()) ::
 {:ok, GameServer.Accounts.User.t()}
 | {:error, :disabled | Ecto.Changeset.t() | term()}

Finds or creates a user associated with the given device_id.
If a user already exists with the device_id we return it. Otherwise we
create an anonymous confirmed user and attach the device_id.

 find_or_create_from_discord(attrs)

 @spec find_or_create_from_discord(map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Finds a user by Discord ID or creates a new user from OAuth data.
Examples
iex> find_or_create_from_discord(%{discord_id: "123", email: "user@example.com"})
{:ok, %User{}}

 find_or_create_from_facebook(attrs)

 @spec find_or_create_from_facebook(map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Finds a user by Facebook ID or creates a new user from OAuth data.
Examples
iex> find_or_create_from_facebook(%{facebook_id: "123", email: "user@example.com"})
{:ok, %User{}}

 find_or_create_from_google(attrs)

 @spec find_or_create_from_google(map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Finds a user by Google ID or creates a new user from OAuth data.
Examples
iex> find_or_create_from_google(%{google_id: "123", email: "user@example.com"})
{:ok, %User{}}

 find_or_create_from_steam(attrs)

 @spec find_or_create_from_steam(map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Finds a user by Steam ID or creates a new user from Steam OpenID data.
Examples
iex> find_or_create_from_steam(%{steam_id: "12345", email: "user@example.com"})
{:ok, %User{}}

 generate_user_session_token(user)

 @spec generate_user_session_token(GameServer.Accounts.User.t()) :: binary()

Generates a session token.

 get_linked_providers(user)

 @spec get_linked_providers(GameServer.Accounts.User.t()) :: %{
 google: boolean(),
 facebook: boolean(),
 discord: boolean(),
 apple: boolean(),
 steam: boolean(),
 device: boolean()
}

Returns a map of linked OAuth providers for the user.
Each provider is a boolean indicating whether that provider is linked.

 get_user(id)

 @spec get_user(integer()) :: GameServer.Accounts.User.t() | nil

Gets a single user by ID.
Returns nil if the User does not exist.
Examples
iex> get_user(123)
%User{}

iex> get_user(456)
nil

 get_user!(id)

 @spec get_user!(integer()) :: GameServer.Accounts.User.t()

Gets a single user.
Raises Ecto.NoResultsError if the User does not exist.
Examples
iex> get_user!(123)
%User{}

iex> get_user!(456)
** (Ecto.NoResultsError)

 get_user_by_apple_id(apple_id)

 @spec get_user_by_apple_id(String.t()) :: GameServer.Accounts.User.t() | nil

Get a user by their Apple ID.
Returns %User{} or nil.

 get_user_by_discord_id(discord_id)

 @spec get_user_by_discord_id(String.t()) :: GameServer.Accounts.User.t() | nil

Get a user by their Discord ID.
Returns %User{} or nil.

 get_user_by_email(email)

 @spec get_user_by_email(String.t()) :: GameServer.Accounts.User.t() | nil

Gets a user by email.
Examples
iex> get_user_by_email("foo@example.com")
%User{}

iex> get_user_by_email("unknown@example.com")
nil

 get_user_by_email_and_password(email, password)

 @spec get_user_by_email_and_password(String.t(), String.t()) ::
 GameServer.Accounts.User.t() | nil

Gets a user by email and password.
Examples
iex> get_user_by_email_and_password("foo@example.com", "correct_password")
%User{}

iex> get_user_by_email_and_password("foo@example.com", "invalid_password")
nil

 get_user_by_facebook_id(facebook_id)

 @spec get_user_by_facebook_id(String.t()) :: GameServer.Accounts.User.t() | nil

Get a user by their Facebook ID.
Returns %User{} or nil.

 get_user_by_google_id(google_id)

 @spec get_user_by_google_id(String.t()) :: GameServer.Accounts.User.t() | nil

Get a user by their Google ID.
Returns %User{} or nil.

 get_user_by_magic_link_token(token)

 @spec get_user_by_magic_link_token(String.t()) :: GameServer.Accounts.User.t() | nil

Gets the user with the given magic link token.

 get_user_by_session_token(token)

 @spec get_user_by_session_token(binary()) ::
 {GameServer.Accounts.User.t(), DateTime.t()} | nil

Gets the user with the given signed token.
If the token is valid {user, token_inserted_at} is returned, otherwise nil is returned.

 get_user_by_steam_id(steam_id)

 @spec get_user_by_steam_id(String.t()) :: GameServer.Accounts.User.t() | nil

Get a user by their Steam ID (steam_id).
Returns %User{} or nil.

 has_password?(user)

 @spec has_password?(GameServer.Accounts.User.t()) :: boolean()

Returns whether the user has a password set.

 link_account(user, attrs, provider_id_field, changeset_fn)

 @spec link_account(
 GameServer.Accounts.User.t(),
 map(),
 atom(),
 (GameServer.Accounts.User.t(), map() ->
 Ecto.Changeset.t())
) ::
 {:ok, GameServer.Accounts.User.t()}
 | {:error, Ecto.Changeset.t() | {:conflict, GameServer.Accounts.User.t()}}

Link an OAuth provider to an existing user account. Updates the user
via the provider's oauth changeset while being careful not to overwrite
existing email or avatars.
Example: link_account(user, %{discord_id: "123", profile_url: "https://..."}, :discord_id, &User.discord_oauth_changeset/2)

 link_device_id(user, device_id)

 @spec link_device_id(GameServer.Accounts.User.t(), String.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Link a device_id to an existing user account. This allows the user to
authenticate using the device_id in addition to their OAuth providers.
Returns {:ok, user} on success or {:error, changeset} if the device_id
is already used by another account.

 login_user_by_magic_link(token)

 @spec login_user_by_magic_link(String.t()) ::
 {:ok, {GameServer.Accounts.User.t(), [GameServer.Accounts.UserToken.t()]}}
 | {:error, :not_found | Ecto.Changeset.t() | term()}

Logs the user in by magic link.
There are three cases to consider:
	The user has already confirmed their email. They are logged in
and the magic link is expired.

	The user has not confirmed their email and no password is set.
In this case, the user gets confirmed, logged in, and all tokens -
including session ones - are expired. In theory, no other tokens
exist but we delete all of them for best security practices.

	The user has not confirmed their email but a password is set.
This cannot happen in the default implementation but may be the
source of security pitfalls. See the "Mixing magic link and password registration" section of
mix help phx.gen.auth.

 register_user(attrs)

 @spec register_user(GameServer.Types.user_registration_attrs()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Registers a user.
Attributes
See GameServer.Types.user_registration_attrs/0 for available fields.
Examples
iex> register_user(%{email: "user@example.com", password: "secret123"})
{:ok, %User{}}

iex> register_user(%{email: "invalid"})
{:error, %Ecto.Changeset{}}

 register_user_and_deliver(attrs, confirmation_url_fun, notifier \\ GameServer.Accounts.UserNotifier)

 @spec register_user_and_deliver(
 GameServer.Types.user_registration_attrs(),
 (String.t() -> String.t()),
 module()
) :: {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t() | term()}

Register a user and send the confirmation email inside a DB transaction.
The function accepts a confirmation_url_fun which must be a function of arity 1
that receives the encoded token and returns the confirmation URL string.
If sending the confirmation email fails the transaction is rolled back and
{:error, reason} is returned. On success it returns {:ok, user}.

 search_users(query, opts \\ [])

 @spec search_users(String.t(), GameServer.Types.pagination_opts()) :: [
 GameServer.Accounts.User.t()
]

Search users by email or display name (case-insensitive, partial match).
Returns a list of User structs.
Options
See GameServer.Types.pagination_opts/0 for available options.

 sudo_mode?(user, minutes \\ -20)

 @spec sudo_mode?(GameServer.Accounts.User.t(), integer()) :: boolean()

Checks whether the user is in sudo mode.
The user is in sudo mode when the last authentication was done no further
than 20 minutes ago. The limit can be given as second argument in minutes.

 unlink_device_id(user)

 @spec unlink_device_id(GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Accounts.User.t()}
 | {:error, :last_auth_method | Ecto.Changeset.t()}

Unlink the device_id from a user's account.
Returns {:ok, user} when successful or {:error, reason}.
Guard: we only allow unlinking when the user will still have at least
one authentication method remaining (OAuth provider or password).
This prevents users losing all login methods unexpectedly.

 unlink_provider(user, provider)

 @spec unlink_provider(
 GameServer.Accounts.User.t(),
 :discord | :apple | :google | :facebook | :steam
) ::
 {:ok, GameServer.Accounts.User.t()}
 | {:error, :last_provider | Ecto.Changeset.t() | term()}

Unlink an OAuth provider from a user's account.
provider should be one of :discord, :apple, :google, :facebook.
This will return {:ok, user} when successful or {:error, reason}.
Guard: we only allow unlinking when the user will still have at least
one other social provider remaining. This prevents users losing all
social logins unexpectedly.

 update_user(user, attrs)

 @spec update_user(GameServer.Accounts.User.t(), GameServer.Types.user_update_attrs()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Updates a user with the given attributes.
This function applies the User.admin_changeset/2 then updates the user and
broadcasts the update on success. It returns the same tuple shape as
Repo.update/1 so callers can pattern-match as before.
Attributes
See GameServer.Types.user_update_attrs/0 for available fields.
Examples
iex> update_user(user, %{display_name: "NewName"})
{:ok, %User{}}

iex> update_user(user, %{metadata: %{level: 5}})
{:ok, %User{}}

 update_user_display_name(user, attrs)

 @spec update_user_display_name(GameServer.Accounts.User.t(), map()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

Updates the user's display name and broadcasts the change.

 update_user_email(user, token)

 @spec update_user_email(GameServer.Accounts.User.t(), String.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, :transaction_aborted}

Updates the user email using the given token.
If the token matches, the user email is updated and the token is deleted.

 update_user_password(user, attrs)

 @spec update_user_password(GameServer.Accounts.User.t(), map()) ::
 {:ok, {GameServer.Accounts.User.t(), [GameServer.Accounts.UserToken.t()]}}
 | {:error, Ecto.Changeset.t()}

Updates the user password.
Returns a tuple with the updated user, as well as a list of expired tokens.
Examples
iex> update_user_password(user, %{password: ...})
{:ok, {%User{}, [...]}}

iex> update_user_password(user, %{password: "too short"})
{:error, %Ecto.Changeset{}}

GameServer.Accounts.Scope

Defines the scope of the caller to be used throughout the app.
The GameServer.Accounts.Scope allows public interfaces to receive
information about the caller, such as if the call is initiated from an
end-user, and if so, which user. Additionally, such a scope can carry fields
such as "super user" or other privileges for use as authorization, or to
ensure specific code paths can only be access for a given scope.
It is useful for logging as well as for scoping pubsub subscriptions and
broadcasts when a caller subscribes to an interface or performs a particular
action.
Feel free to extend the fields on this struct to fit the needs of
growing application requirements.

 Summary

 Functions

 for_user(user)

 Creates a scope for the given user.

 Functions

 for_user(user)

Creates a scope for the given user.
Returns nil if no user is given.

GameServer.Accounts.User

The User schema and associated changeset functions used across the
application (registration, OAuth, and admin changes).
This module keeps Ecto changesets for common user interactions and
validations so other domains can reuse them safely.

 Summary

 Types

 t()

 The public user struct used across the application.

 Functions

 admin_changeset(user, attrs)

 A user changeset for admin updates.

 apple_oauth_changeset(user, attrs)

 A user changeset for Apple OAuth registration.

 attach_device_changeset(user, attrs)

 Changeset used when a device_id is present (linking device_id to user).
Ensures device_id is stored on user record and enforces uniqueness by DB
constraint.

 confirm_changeset(user)

 Confirms the account by setting confirmed_at.

 device_changeset(user, attrs)

 A user changeset used for device-based logins where there is no email.

 discord_oauth_changeset(user, attrs)

 A user changeset for Discord OAuth registration.

 display_name_changeset(user, attrs)

 A simple changeset for updating a user's display name.

 email_changeset(user, attrs, opts \\ [])

 A user changeset for registering or changing the email.

 facebook_oauth_changeset(user, attrs)

 A user changeset for Facebook OAuth registration.

 google_oauth_changeset(user, attrs)

 A user changeset for Google OAuth registration.

 password_changeset(user, attrs, opts \\ [])

 A user changeset for changing the password.

 registration_changeset(user, attrs, opts \\ [])

 A user changeset for registering a new user.

 steam_oauth_changeset(user, attrs)

 A user changeset for Steam OpenID registration.

 valid_password?(arg1, password)

 Verifies the password.

 Types

 t()

 @type t() :: %GameServer.Accounts.User{
 __meta__: term(),
 apple_id: term(),
 authenticated_at: term(),
 confirmed_at: DateTime.t() | nil,
 device_id: term(),
 discord_id: term(),
 display_name: String.t() | nil,
 email: String.t() | nil,
 facebook_id: term(),
 google_id: term(),
 hashed_password: String.t() | nil,
 id: Ecto.UUID.t() | integer() | nil,
 inserted_at: term(),
 is_admin: term(),
 lobby: term(),
 lobby_id: integer() | nil,
 metadata: map(),
 password: term(),
 profile_url: term(),
 steam_id: term(),
 updated_at: term()
}

The public user struct used across the application.

 Functions

 admin_changeset(user, attrs)

A user changeset for admin updates.

 apple_oauth_changeset(user, attrs)

A user changeset for Apple OAuth registration.
It accepts email and Apple ID.

 attach_device_changeset(user, attrs)

Changeset used when a device_id is present (linking device_id to user).
Ensures device_id is stored on user record and enforces uniqueness by DB
constraint.

 confirm_changeset(user)

Confirms the account by setting confirmed_at.

 device_changeset(user, attrs)

A user changeset used for device-based logins where there is no email.
Device users are created with optional display_name and metadata and are
immediately confirmed so the SDK can receive tokens without email confirmation.

 discord_oauth_changeset(user, attrs)

A user changeset for Discord OAuth registration.
It accepts email and Discord fields.

 display_name_changeset(user, attrs)

A simple changeset for updating a user's display name.

 email_changeset(user, attrs, opts \\ [])

A user changeset for registering or changing the email.
It requires the email to change otherwise an error is added.
Options
	:validate_unique - Set to false if you don't want to validate the
uniqueness of the email, useful when displaying live validations.
Defaults to true.

 facebook_oauth_changeset(user, attrs)

A user changeset for Facebook OAuth registration.
It accepts email and Facebook ID.

 google_oauth_changeset(user, attrs)

A user changeset for Google OAuth registration.
It accepts email and Google ID.

 password_changeset(user, attrs, opts \\ [])

A user changeset for changing the password.
It is important to validate the length of the password, as long passwords may
be very expensive to hash for certain algorithms.
Options
	:hash_password - Hashes the password so it can be stored securely
in the database and ensures the password field is cleared to prevent
leaks in the logs. If password hashing is not needed and clearing the
password field is not desired (like when using this changeset for
validations on a LiveView form), this option can be set to false.
Defaults to true.

 registration_changeset(user, attrs, opts \\ [])

A user changeset for registering a new user.

 steam_oauth_changeset(user, attrs)

A user changeset for Steam OpenID registration.
Expects steam_id and optional profile fields.

 valid_password?(arg1, password)

Verifies the password.
If there is no user or the user doesn't have a password, we call
Bcrypt.no_user_verify/0 to avoid timing attacks.

GameServer.Accounts.UserNotifier

Small helpers used to deliver transactional emails for the Accounts flow
(confirmation, magic link, and email change instructions).
These functions are thin wrappers over the configured application Mailer.

 Summary

 Functions

 deliver_confirmation_instructions(user, url)

 deliver_login_instructions(user, url)

 Deliver instructions to log in with a magic link.

 deliver_test_email(recipient)

 Send a simple test email to the given recipient address. Used by admin tools
to verify SMTP configuration and delivery.
Returns the same shape as deliver/3.

 deliver_update_email_instructions(user, url)

 Deliver instructions to update a user email.

 Functions

 deliver_confirmation_instructions(user, url)

 deliver_login_instructions(user, url)

Deliver instructions to log in with a magic link.

 deliver_test_email(recipient)

Send a simple test email to the given recipient address. Used by admin tools
to verify SMTP configuration and delivery.
Returns the same shape as deliver/3.

 deliver_update_email_instructions(user, url)

Deliver instructions to update a user email.

GameServer.Accounts.UserToken

Functions and schema for persistent user tokens used by sessions, magic links,
and email-change workflows.
Tokens generated by this module are stored hashed when sent via email and
stored raw for session tokens (which are signed). The module provides helper
queries for verification and convenient builders used throughout the app.

 Summary

 Types

 t()

 Functions

 build_email_token(user, context)

 Builds a token and its hash to be delivered to the user's email.

 build_session_token(user)

 Generates a token that will be stored in a signed place,
such as session or cookie. As they are signed, those
tokens do not need to be hashed.

 verify_change_email_token_query(token, context)

 Checks if the token is valid and returns its underlying lookup query.

 verify_magic_link_token_query(token)

 Checks if the token is valid and returns its underlying lookup query.

 verify_session_token_query(token)

 Checks if the token is valid and returns its underlying lookup query.

 Types

 t()

 @type t() :: %GameServer.Accounts.UserToken{
 __meta__: term(),
 authenticated_at: DateTime.t() | nil,
 context: String.t() | nil,
 id: integer() | nil,
 inserted_at: DateTime.t() | nil,
 sent_to: String.t() | nil,
 token: binary() | nil,
 user: GameServer.Accounts.User.t() | Ecto.Association.NotLoaded.t() | nil,
 user_id: integer() | nil
}

 Functions

 build_email_token(user, context)

Builds a token and its hash to be delivered to the user's email.
The non-hashed token is sent to the user email while the
hashed part is stored in the database. The original token cannot be reconstructed,
which means anyone with read-only access to the database cannot directly use
the token in the application to gain access. Furthermore, if the user changes
their email in the system, the tokens sent to the previous email are no longer
valid.
Users can easily adapt the existing code to provide other types of delivery methods,
for example, by phone numbers.

 build_session_token(user)

Generates a token that will be stored in a signed place,
such as session or cookie. As they are signed, those
tokens do not need to be hashed.
The reason why we store session tokens in the database, even
though Phoenix already provides a session cookie, is because
Phoenix' default session cookies are not persisted, they are
simply signed and potentially encrypted. This means they are
valid indefinitely, unless you change the signing/encryption
salt.
Therefore, storing them allows individual user
sessions to be expired. The token system can also be extended
to store additional data, such as the device used for logging in.
You could then use this information to display all valid sessions
and devices in the UI and allow users to explicitly expire any
session they deem invalid.

 verify_change_email_token_query(token, context)

Checks if the token is valid and returns its underlying lookup query.
The query returns the user_token found by the token, if any.
This is used to validate requests to change the user
email.
The given token is valid if it matches its hashed counterpart in the
database and if it has not expired (after @change_email_validity_in_days).
The context must always start with "change:".

 verify_magic_link_token_query(token)

Checks if the token is valid and returns its underlying lookup query.
If found, the query returns a tuple of the form {user, token}.
The given token is valid if it matches its hashed counterpart in the
database. This function also checks if the token is being used within
15 minutes. The context of a magic link token is always "login".

 verify_session_token_query(token)

Checks if the token is valid and returns its underlying lookup query.
The query returns the user found by the token, if any, along with the token's creation time.
The token is valid if it matches the value in the database and it has
not expired (after @session_validity_in_days).

GameServer.Apple

Apple OAuth client secret generation for Ueberauth.
Apple requires client secrets to be generated dynamically as they expire after 6 months.
This module handles the generation and caching of Apple client secrets.

 Summary

 Functions

 client_secret(opts \\ [])

 Generates or retrieves a cached Apple client secret.

 Functions

 client_secret(opts \\ [])

 @spec client_secret(keyword()) :: String.t()

Generates or retrieves a cached Apple client secret.
Returns the client secret string, either from cache or newly generated.

GameServer.Async

Utilities for running best-effort background work.
This is intentionally used for non-critical side effects (cache invalidation,
notifications, hooks) where we want the caller to return quickly.
Tasks are started under a Task.Supervisor when available (recommended in the
host app). If the supervisor isn't running (e.g. certain test setups), we
fall back to Task.start/1.

 Summary

 Types

 zero_arity_fun()

 Functions

 run(fun)

 Types

 zero_arity_fun()

 @type zero_arity_fun() :: (-> any())

 Functions

 run(fun)

 @spec run(zero_arity_fun()) :: :ok

GameServer.Cache

Application cache backed by Nebulex.
This cache uses a 2-level (near-cache) topology via
Nebulex.Adapters.Multilevel:
	L1: local in-memory cache (GameServer.Cache.L1)
	L2: either Redis (GameServer.Cache.L2.Redis) or a partitioned topology
(GameServer.Cache.L2.Partitioned), selected via runtime config.

 Summary

 Functions

 count_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 get(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

 Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

 Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

 Callback implementation for Nebulex.Cache.in_transaction?/2.

 inclusion_policy(name \\ __MODULE__)

 A convenience function to get the cache inclusion policy.

 incr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info!/3.

 put(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

 Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

 Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update!/5.

 Functions

 count_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 get(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

Callback implementation for Nebulex.Cache.in_transaction?/2.

 inclusion_policy(name \\ __MODULE__)

A convenience function to get the cache inclusion policy.

 incr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info!/3.

 put(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update!/5.

GameServer.Cache.L1

L1 cache (local, in-memory).
This cache is the fastest level in the multi-level cache hierarchy.

 Summary

 Functions

 count_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 generations()

 A convenience function for retrieving the current generations.

 get(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

 Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

 Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

 Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info!/3.

 new_generation(opts \\ [])

 A convenience function for creating new generations.

 newer_generation()

 A convenience function for retrieving the newer generation.

 put(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace!/4.

 reset_gc_interval()

 A convenience function for reset the GC interval.

 stream(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

 Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

 Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update!/5.

 Functions

 count_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 generations()

A convenience function for retrieving the current generations.

 get(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info!/3.

 new_generation(opts \\ [])

A convenience function for creating new generations.

 newer_generation()

A convenience function for retrieving the newer generation.

 put(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace!/4.

 reset_gc_interval()

A convenience function for reset the GC interval.

 stream(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update!/5.

GameServer.Cache.L2.Partitioned

L2 cache (partitioned topology).
This adapter shards keys across the Erlang cluster (single-hop) and uses a
local primary storage on each node.

 Summary

 Functions

 __primary__()

 A convenience function for getting the primary storage cache.

 count_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 find_node(name \\ get_dynamic_cache(), key)

 A convenience function to get the node of the given key.

 find_node!(name \\ get_dynamic_cache(), key)

 Same as find_node/2 but raises an error if an error occurs.

 get(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store!/4.

 get_ring_name(name)

 A convenience function for getting the ring name.

 has_key?(key, opts \\ [])

 Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

 Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

 Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info!/3.

 join_cluster(name \\ get_dynamic_cache())

 A convenience function for joining the cache to the cluster.

 leave_cluster(name \\ get_dynamic_cache())

 A convenience function for removing the cache from the cluster.

 nodes(name \\ get_dynamic_cache())

 A convenience function for getting the cluster nodes.

 put(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

 Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

 Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update!/5.

 Functions

 __primary__()

A convenience function for getting the primary storage cache.

 count_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 find_node(name \\ get_dynamic_cache(), key)

A convenience function to get the node of the given key.

 find_node!(name \\ get_dynamic_cache(), key)

Same as find_node/2 but raises an error if an error occurs.

 get(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store!/4.

 get_ring_name(name)

A convenience function for getting the ring name.

 has_key?(key, opts \\ [])

Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info!/3.

 join_cluster(name \\ get_dynamic_cache())

A convenience function for joining the cache to the cluster.

 leave_cluster(name \\ get_dynamic_cache())

A convenience function for removing the cache from the cluster.

 nodes(name \\ get_dynamic_cache())

A convenience function for getting the cluster nodes.

 put(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update!/5.

GameServer.Cache.L2.Partitioned.Primary

This is the cache for the primary storage.

 Summary

 Functions

 count_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 generations()

 A convenience function for retrieving the current generations.

 get(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

 Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

 Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

 Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info!/3.

 new_generation(opts \\ [])

 A convenience function for creating new generations.

 newer_generation()

 A convenience function for retrieving the newer generation.

 put(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace!/4.

 reset_gc_interval()

 A convenience function for reset the GC interval.

 stream(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

 Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

 Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update!/5.

 Functions

 count_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all!/3.

 decr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all!/3.

 expire(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 generations()

A convenience function for retrieving the current generations.

 get(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.has_key?/3.

 in_transaction?(opts \\ [])

Callback implementation for Nebulex.Cache.in_transaction?/1.

 in_transaction?(dynamic_cache, opts)

Callback implementation for Nebulex.Cache.in_transaction?/2.

 incr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info!/3.

 new_generation(opts \\ [])

A convenience function for creating new generations.

 newer_generation()

A convenience function for retrieving the newer generation.

 put(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace!/4.

 reset_gc_interval()

A convenience function for reset the GC interval.

 stream(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch!/3.

 transaction(fun, opts \\ [])

Callback implementation for Nebulex.Cache.transaction/2.

 transaction(dynamic_cache, fun, opts)

Callback implementation for Nebulex.Cache.transaction/3.

 ttl(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update!/5.

GameServer.Cache.L2.Redis

L2 cache backed by Redis.
This cache is shared across app instances, enabling horizontal scaling.

 Summary

 Functions

 count_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.count_all!/3.

 decode_key(name \\ __MODULE__, key)

 A convenience to decode the given key.

 decode_value(name \\ __MODULE__, value)

 A convenience to decode the given value.

 decr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.delete_all!/3.

 encode_key(name \\ __MODULE__, key)

 A convenience to encode the given key.

 encode_value(name \\ __MODULE__, value)

 A convenience to encode the given value.

 expire(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

 Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

 Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_conn(opts \\ [])

 A convenience to fetch a Redis connection.

 fetch_conn!(opts \\ [])

 Same as fetch_conn but raises an exception in case of error.

 fetch_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 get(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

 Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

 Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

 Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

 Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.has_key?/3.

 incr(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

 Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

 Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

 Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

 Callback implementation for Nebulex.Cache.info!/3.

 put(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

 Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

 Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

 Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

 Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

 Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

 Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

 Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

 Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.touch!/3.

 ttl(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

 Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

 Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

 Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

 Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

 Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

 Callback implementation for Nebulex.Cache.update!/5.

 Functions

 count_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all/2.

 count_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all/3.

 count_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.count_all!/2.

 count_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.count_all!/3.

 decode_key(name \\ __MODULE__, key)

A convenience to decode the given key.

 decode_value(name \\ __MODULE__, value)

A convenience to decode the given value.

 decr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr/3.

 decr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr/4.

 decr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.decr!/3.

 decr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.decr!/4.

 delete(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete/2.

 delete(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete/3.

 delete!(key, opts \\ [])

Callback implementation for Nebulex.Cache.delete!/2.

 delete!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.delete!/3.

 delete_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all/2.

 delete_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all/3.

 delete_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.delete_all!/2.

 delete_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.delete_all!/3.

 encode_key(name \\ __MODULE__, key)

A convenience to encode the given key.

 encode_value(name \\ __MODULE__, value)

A convenience to encode the given value.

 expire(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire/3.

 expire(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire/4.

 expire!(key, ttl, opts \\ [])

Callback implementation for Nebulex.Cache.expire!/3.

 expire!(dynamic_cache, key, ttl, opts)

Callback implementation for Nebulex.Cache.expire!/4.

 fetch(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch/2.

 fetch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch/3.

 fetch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.fetch!/2.

 fetch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.fetch!/3.

 fetch_conn(opts \\ [])

A convenience to fetch a Redis connection.

 fetch_conn!(opts \\ [])

Same as fetch_conn but raises an exception in case of error.

 fetch_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store/3.

 fetch_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store/4.

 fetch_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.fetch_or_store!/3.

 fetch_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.fetch_or_store!/4.

 get(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get/3.

 get(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get/4.

 get!(key, default \\ nil, opts \\ [])

Callback implementation for Nebulex.Cache.get!/3.

 get!(dynamic_cache, key, default, opts)

Callback implementation for Nebulex.Cache.get!/4.

 get_all(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all/2.

 get_all(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all/3.

 get_all!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.get_all!/2.

 get_all!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.get_all!/3.

 get_and_update(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update/3.

 get_and_update(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update/4.

 get_and_update!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_and_update!/3.

 get_and_update!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_and_update!/4.

 get_or_store(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store/3.

 get_or_store(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store/4.

 get_or_store!(key, fun, opts \\ [])

Callback implementation for Nebulex.Cache.get_or_store!/3.

 get_or_store!(dynamic_cache, key, fun, opts)

Callback implementation for Nebulex.Cache.get_or_store!/4.

 has_key?(key, opts \\ [])

Callback implementation for Nebulex.Cache.has_key?/2.

 has_key?(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.has_key?/3.

 incr(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr/3.

 incr(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr/4.

 incr!(key, amount \\ 1, opts \\ [])

Callback implementation for Nebulex.Cache.incr!/3.

 incr!(dynamic_cache, key, amount, opts)

Callback implementation for Nebulex.Cache.incr!/4.

 info(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info/2.

 info(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info/3.

 info!(spec \\ :all, opts \\ [])

Callback implementation for Nebulex.Cache.info!/2.

 info!(dynamic_cache, spec, opts)

Callback implementation for Nebulex.Cache.info!/3.

 put(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put/3.

 put(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put/4.

 put!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put!/3.

 put!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put!/4.

 put_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all/2.

 put_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all/3.

 put_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_all!/2.

 put_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_all!/3.

 put_new(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new/3.

 put_new(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new/4.

 put_new!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.put_new!/3.

 put_new!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.put_new!/4.

 put_new_all(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all/2.

 put_new_all(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all/3.

 put_new_all!(entries, opts \\ [])

Callback implementation for Nebulex.Cache.put_new_all!/2.

 put_new_all!(dynamic_cache, entries, opts)

Callback implementation for Nebulex.Cache.put_new_all!/3.

 register_event_listener(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener/2.

 register_event_listener(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener/3.

 register_event_listener!(listener, opts \\ [])

Callback implementation for Nebulex.Cache.register_event_listener!/2.

 register_event_listener!(dynamic_cache, listener, opts)

Callback implementation for Nebulex.Cache.register_event_listener!/3.

 replace(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace/3.

 replace(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace/4.

 replace!(key, value, opts \\ [])

Callback implementation for Nebulex.Cache.replace!/3.

 replace!(dynamic_cache, key, value, opts)

Callback implementation for Nebulex.Cache.replace!/4.

 stream(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream/2.

 stream(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream/3.

 stream!(query_spec \\ [], opts \\ [])

Callback implementation for Nebulex.Cache.stream!/2.

 stream!(dynamic_cache, query_spec, opts)

Callback implementation for Nebulex.Cache.stream!/3.

 take(key, opts \\ [])

Callback implementation for Nebulex.Cache.take/2.

 take(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take/3.

 take!(key, opts \\ [])

Callback implementation for Nebulex.Cache.take!/2.

 take!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.take!/3.

 touch(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch/2.

 touch(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch/3.

 touch!(key, opts \\ [])

Callback implementation for Nebulex.Cache.touch!/2.

 touch!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.touch!/3.

 ttl(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl/2.

 ttl(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl/3.

 ttl!(key, opts \\ [])

Callback implementation for Nebulex.Cache.ttl!/2.

 ttl!(dynamic_cache, key, opts)

Callback implementation for Nebulex.Cache.ttl!/3.

 unregister_event_listener(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener/2.

 unregister_event_listener(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener/3.

 unregister_event_listener!(id, opts \\ [])

Callback implementation for Nebulex.Cache.unregister_event_listener!/2.

 unregister_event_listener!(dynamic_cache, id, opts)

Callback implementation for Nebulex.Cache.unregister_event_listener!/3.

 update(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update/4.

 update(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update/5.

 update!(key, initial, fun, opts \\ [])

Callback implementation for Nebulex.Cache.update!/4.

 update!(dynamic_cache, key, initial, fun, opts)

Callback implementation for Nebulex.Cache.update!/5.

GameServer.Env

Helpers for reading and parsing environment variables.
Safe to use from config/runtime.exs (runs at runtime after compilation).

 Summary

 Types

 bool_default()

 Functions

 atom_existing(name, default \\ nil)

 bool(name, default \\ false)

 integer(name, default \\ nil)

 log_level(name, default \\ :debug)

 Types

 bool_default()

 @type bool_default() :: boolean()

 Functions

 atom_existing(name, default \\ nil)

 @spec atom_existing(String.t(), atom() | nil) :: atom() | nil

 bool(name, default \\ false)

 @spec bool(String.t(), bool_default()) :: boolean()

 integer(name, default \\ nil)

 @spec integer(String.t(), integer() | nil) :: integer() | nil

 log_level(name, default \\ :debug)

 @spec log_level(String.t(), Logger.level() | false) :: Logger.level() | false

GameServer.Friends

Friends context - handles friend requests and relationships.
Basic semantics:
	A single friendships row represents a directed request from requester -> target.
	status: "pending" | "accepted" | "rejected" | "blocked"

	When a user accepts a pending incoming request, that request becomes accepted.
If a reverse pending request exists, it will be removed to avoid duplicate rows.
	Listing friends returns the other user from rows with status accepted in either
direction.

Usage
Create a friend request (requester -> target)
{:ok, friendship} = GameServer.Friends.create_request(requester_id, target_id)

Accept a pending incoming request (performed by the target)
{:ok, accepted} = GameServer.Friends.accept_friend_request(friendship.id, %GameServer.Accounts.User{id: target_id})

List accepted friends for a user (paginated)
friends = GameServer.Friends.list_friends_for_user(user_id, page: 1, page_size: 25)

Count accepted friends for a user
count = GameServer.Friends.count_friends_for_user(user_id)

Remove a friendship (either direction)
{:ok, _} = GameServer.Friends.remove_friend(user_id, friend_id)

 Summary

 Types

 user_id()

 Functions

 accept_friend_request(friendship_id, user)

 Accept a friend request (only the target may accept). Returns {:ok, friendship}.

 block_friend_request(friendship_id, user)

 Block an incoming request (only the target may block). Returns {:ok, friendship} with status "blocked".

 cancel_request(friendship_id, user)

 Cancel an outgoing friend request (only the requester may cancel).

 count_blocked_for_user(user_id)

 Count blocked friendships for a user (number of blocked rows where user is target).

 count_friends_for_user(user_id)

 Count accepted friends for a given user (distinct other user ids).

 count_incoming_requests(user_id)

 Count incoming pending friend requests for a user.

 count_outgoing_requests(user_id)

 Count outgoing pending friend requests for a user.

 create_request(requester_id, target_id)

 Create a friend request from requester -> target.
 If a reverse pending request exists (target -> requester) it will be accepted instead.
 Returns {:ok, friendship} on success or {:error, reason}.

 get_by_pair(requester_id, target_id)

 Get friendship between two users (ordered requester->target) if exists

 get_friendship(id)

 Get friendship by id (returns nil when not found)

 get_friendship!(id)

 Get friendship by id

 list_blocked_for_user(user_id, opts \\ [])

 List blocked friendships for a user (Friendship structs where the user is the blocker / target).

 list_friends_for_user(user_id, opts \\ [])

 List accepted friends for a given user id - returns list of User structs.

 list_friends_with_friendship(user_id, opts \\ [])

 List accepted friendships for a user along with the other user and friendship id.

 list_incoming_requests(user_id, opts \\ [])

 List incoming pending friend requests for a user (Friendship structs).

 list_outgoing_requests(user_id, opts \\ [])

 List outgoing pending friend requests for a user (Friendship structs).

 reject_friend_request(friendship_id, user)

 Reject a friend request (only the target may reject). Returns {:ok, friendship}.

 remove_friend(user_id, friend_id)

 Remove a friendship (either direction) - only participating users may call this.

 subscribe_user(user_id)

 unblock_friendship(friendship_id, user)

 Unblock a previously-blocked friendship (only the user who blocked may unblock). Returns {:ok, :unblocked} on success.

 unsubscribe_user(user_id)

 Types

 user_id()

 @type user_id() :: integer()

 Functions

 accept_friend_request(friendship_id, user)

 @spec accept_friend_request(integer(), GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Friends.Friendship.t()} | {:error, term()}

Accept a friend request (only the target may accept). Returns {:ok, friendship}.

 block_friend_request(friendship_id, user)

 @spec block_friend_request(integer(), GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Friends.Friendship.t()} | {:error, term()}

Block an incoming request (only the target may block). Returns {:ok, friendship} with status "blocked".

 cancel_request(friendship_id, user)

 @spec cancel_request(integer(), GameServer.Accounts.User.t()) ::
 {:ok, :cancelled} | {:error, :not_found | :not_authorized | term()}

Cancel an outgoing friend request (only the requester may cancel).

 count_blocked_for_user(user_id)

 @spec count_blocked_for_user(user_id() | GameServer.Accounts.User.t()) ::
 non_neg_integer()

Count blocked friendships for a user (number of blocked rows where user is target).

 count_friends_for_user(user_id)

 @spec count_friends_for_user(user_id() | GameServer.Accounts.User.t()) ::
 non_neg_integer()

Count accepted friends for a given user (distinct other user ids).

 count_incoming_requests(user_id)

 @spec count_incoming_requests(user_id() | GameServer.Accounts.User.t()) ::
 non_neg_integer()

Count incoming pending friend requests for a user.

 count_outgoing_requests(user_id)

 @spec count_outgoing_requests(user_id() | GameServer.Accounts.User.t()) ::
 non_neg_integer()

Count outgoing pending friend requests for a user.

 create_request(requester_id, target_id)

 @spec create_request(GameServer.Accounts.User.t() | user_id(), user_id()) ::
 {:ok, GameServer.Friends.Friendship.t()}
 | {:error,
 :cannot_friend_self
 | :blocked
 | :already_friends
 | :already_requested
 | term()}

Create a friend request from requester -> target.
 If a reverse pending request exists (target -> requester) it will be accepted instead.
 Returns {:ok, friendship} on success or {:error, reason}.

 get_by_pair(requester_id, target_id)

 @spec get_by_pair(user_id(), user_id()) :: GameServer.Friends.Friendship.t() | nil

Get friendship between two users (ordered requester->target) if exists

 get_friendship(id)

 @spec get_friendship(integer()) :: GameServer.Friends.Friendship.t() | nil

Get friendship by id (returns nil when not found)

 get_friendship!(id)

 @spec get_friendship!(integer()) :: GameServer.Friends.Friendship.t()

Get friendship by id

 list_blocked_for_user(user_id, opts \\ [])

 @spec list_blocked_for_user(
 user_id() | GameServer.Accounts.User.t(),
 GameServer.Types.pagination_opts()
) :: [GameServer.Friends.Friendship.t()]

List blocked friendships for a user (Friendship structs where the user is the blocker / target).

 list_friends_for_user(user_id, opts \\ [])

 @spec list_friends_for_user(
 integer() | GameServer.Accounts.User.t(),
 GameServer.Types.pagination_opts()
) :: [GameServer.Accounts.User.t()]

List accepted friends for a given user id - returns list of User structs.
Options
See GameServer.Types.pagination_opts/0 for available options.

 list_friends_with_friendship(user_id, opts \\ [])

 @spec list_friends_with_friendship(
 integer() | GameServer.Accounts.User.t(),
 GameServer.Types.pagination_opts()
) :: [%{friendship_id: integer(), user: GameServer.Accounts.User.t()}]

List accepted friendships for a user along with the other user and friendship id.
Returns a list of maps: %{friendship_id: integer(), user: %User{}}

 list_incoming_requests(user_id, opts \\ [])

 @spec list_incoming_requests(
 integer() | GameServer.Accounts.User.t(),
 GameServer.Types.pagination_opts()
) :: [GameServer.Friends.Friendship.t()]

List incoming pending friend requests for a user (Friendship structs).
Options
See GameServer.Types.pagination_opts/0 for available options.

 list_outgoing_requests(user_id, opts \\ [])

 @spec list_outgoing_requests(
 integer() | GameServer.Accounts.User.t(),
 GameServer.Types.pagination_opts()
) :: [GameServer.Friends.Friendship.t()]

List outgoing pending friend requests for a user (Friendship structs).
Options
See GameServer.Types.pagination_opts/0 for available options.

 reject_friend_request(friendship_id, user)

 @spec reject_friend_request(integer(), GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Friends.Friendship.t()} | {:error, term()}

Reject a friend request (only the target may reject). Returns {:ok, friendship}.

 remove_friend(user_id, friend_id)

 @spec remove_friend(integer(), integer()) ::
 {:ok, GameServer.Friends.Friendship.t()} | {:error, term()}

Remove a friendship (either direction) - only participating users may call this.

 subscribe_user(user_id)

 @spec subscribe_user(user_id()) :: :ok

 unblock_friendship(friendship_id, user)

 @spec unblock_friendship(integer(), GameServer.Accounts.User.t()) ::
 {:ok, :unblocked} | {:error, term()}

Unblock a previously-blocked friendship (only the user who blocked may unblock). Returns {:ok, :unblocked} on success.

 unsubscribe_user(user_id)

 @spec unsubscribe_user(user_id()) :: :ok

GameServer.Friends.Friendship

Ecto schema representing a friendship/request between two users.
The friendship object stores the requester and the target user together with
a status field which can be "pending", "accepted", "rejected" or
"blocked".

 Summary

 Types

 t()

 A friendship/request record between two users.

 Types

 t()

 @type t() :: %GameServer.Friends.Friendship{
 __meta__: term(),
 id: integer() | nil,
 inserted_at: term(),
 requester: term(),
 requester_id: integer() | nil,
 status: String.t(),
 target: term(),
 target_id: integer() | nil,
 updated_at: term()
}

A friendship/request record between two users.

GameServer.Hooks behaviour

Behaviour for application-level hooks / callbacks.
Implement this behaviour to receive lifecycle events from core flows
(registration, login, provider linking, deletion) and run custom logic.
A module implementing this behaviour can be configured with
config :game_server_core, :hooks_module, MyApp.HooksImpl
The default implementation is a no-op.

 Summary

 Types

 hook_result(attrs_or_user)

 kv_opts()

 Options passed to hooks that accept an options map/keyword list.

 Callbacks

 after_lobby_create(term)

 after_lobby_delete(term)

 after_lobby_host_change(term, term)

 after_lobby_join(t, term)

 after_lobby_leave(t, term)

 after_lobby_update(term)

 after_startup()

 after_user_kicked(t, t, term)

 after_user_login(t)

 after_user_register(t)

 before_kv_get(t, kv_opts)

 Called before a KV get/2 is performed. Implementations should return
:public if the key may be read publicly, or :private to restrict access.

 before_lobby_create(map)

 before_lobby_delete(term)

 before_lobby_join(t, term, term)

 before_lobby_leave(t, term)

 before_lobby_update(term, map)

 before_stop()

 before_user_kicked(t, t, term)

 on_custom_hook(t, list)

 Handle a dynamically-exported RPC function.

 Functions

 call(name, args \\ [], opts \\ [])

 Call an arbitrary function exported by the configured hooks module.

 caller()

 When a hooks function is executed via call/3 or internal_call/3, an
optional :caller can be provided in the options. The caller will be
injected into the spawned task's process dictionary and is accessible via
GameServer.Hooks.caller/0 (the raw value) or caller_id/0 (the numeric id
when the value is a user struct or map containing :id).

 caller_id()

 caller_user()

 Return the user struct for the current caller when available. This will
 attempt to resolve the caller via GameServer.Accounts.get_user!/1 when the
 caller is an integer id or a map containing an :id key. Returns nil when
 no caller or user is found.

 exported_functions(mod \\ module())

 Return a list of exported functions on the currently registered hooks module.

 internal_call(name, args \\ [], opts \\ [])

 Call an internal lifecycle callback. When a callback is missing this
 returns a sensible default (eg. {:ok, attrs} for before callbacks) so
 domain code doesn't need to handle missing hooks specially in most cases.

 invoke(name, args \\ [])

 Invoke a dynamic hook function by name.

 module()

 Return the configured module that implements the hooks behaviour.

 Types

 hook_result(attrs_or_user)

 @type hook_result(attrs_or_user) :: {:ok, attrs_or_user} | {:error, term()}

 kv_opts()

 @type kv_opts() :: map() | keyword()

Options passed to hooks that accept an options map/keyword list.
Common keys include :user_id (pos_integer) and other domain-specific
options. Hooks may accept either a map or keyword list for convenience.

 Callbacks

 after_lobby_create(term)

 @callback after_lobby_create(term()) :: any()

 after_lobby_delete(term)

 @callback after_lobby_delete(term()) :: any()

 after_lobby_host_change(term, term)

 @callback after_lobby_host_change(term(), term()) :: any()

 after_lobby_join(t, term)

 @callback after_lobby_join(GameServer.Accounts.User.t(), term()) :: any()

 after_lobby_leave(t, term)

 @callback after_lobby_leave(GameServer.Accounts.User.t(), term()) :: any()

 after_lobby_update(term)

 @callback after_lobby_update(term()) :: any()

 after_startup()

 @callback after_startup() :: any()

 after_user_kicked(t, t, term)

 @callback after_user_kicked(
 GameServer.Accounts.User.t(),
 GameServer.Accounts.User.t(),
 term()
) :: any()

 after_user_login(t)

 @callback after_user_login(GameServer.Accounts.User.t()) :: any()

 after_user_register(t)

 @callback after_user_register(GameServer.Accounts.User.t()) :: any()

 before_kv_get(t, kv_opts)

 @callback before_kv_get(String.t(), kv_opts()) :: hook_result(:public | :private)

Called before a KV get/2 is performed. Implementations should return
:public if the key may be read publicly, or :private to restrict access.
Receives the key and an opts map/keyword (see kv_opts/0). Return
either the bare atom (e.g. :public) or {:ok, :public}; return {:error, reason}
to block the read.

 before_lobby_create(map)

 @callback before_lobby_create(map()) :: hook_result(map())

 before_lobby_delete(term)

 @callback before_lobby_delete(term()) :: hook_result(term())

 before_lobby_join(t, term, term)

 @callback before_lobby_join(GameServer.Accounts.User.t(), term(), term()) ::
 hook_result({GameServer.Accounts.User.t(), term(), term()})

 before_lobby_leave(t, term)

 @callback before_lobby_leave(GameServer.Accounts.User.t(), term()) ::
 hook_result({GameServer.Accounts.User.t(), term()})

 before_lobby_update(term, map)

 @callback before_lobby_update(term(), map()) :: hook_result(map())

 before_stop()

 @callback before_stop() :: any()

 before_user_kicked(t, t, term)

 @callback before_user_kicked(
 GameServer.Accounts.User.t(),
 GameServer.Accounts.User.t(),
 term()
) ::
 hook_result(
 {GameServer.Accounts.User.t(), GameServer.Accounts.User.t(), term()}
)

 on_custom_hook(t, list)

 @callback on_custom_hook(String.t(), list()) :: any()

Handle a dynamically-exported RPC function.
This callback is used for function names that were registered at runtime (eg.
via a plugin's after_startup/0 return value) and therefore may not exist as
exported Elixir functions on the hooks module.
Receives the function name and the argument list.

 Functions

 call(name, args \\ [], opts \\ [])

Call an arbitrary function exported by the configured hooks module.
This is a safe wrapper that checks function existence, enforces an allow-list
if configured and runs the call inside a short Task with a configurable
timeout to avoid long-running user code.
Returns {:ok, result} | {:error, reason}

 caller()

 @spec caller() :: any() | nil

When a hooks function is executed via call/3 or internal_call/3, an
optional :caller can be provided in the options. The caller will be
injected into the spawned task's process dictionary and is accessible via
GameServer.Hooks.caller/0 (the raw value) or caller_id/0 (the numeric id
when the value is a user struct or map containing :id).

 caller_id()

 @spec caller_id() :: integer() | nil

 caller_user()

 @spec caller_user() :: GameServer.Accounts.User.t() | nil

Return the user struct for the current caller when available. This will
 attempt to resolve the caller via GameServer.Accounts.get_user!/1 when the
 caller is an integer id or a map containing an :id key. Returns nil when
 no caller or user is found.

 exported_functions(mod \\ module())

Return a list of exported functions on the currently registered hooks module.
The result is a list of maps like: [%{name: "start_game", arities: [2,3]}, ...]
This is useful for tooling and admin UI to display what RPCs are available.

 internal_call(name, args \\ [], opts \\ [])

Call an internal lifecycle callback. When a callback is missing this
 returns a sensible default (eg. {:ok, attrs} for before callbacks) so
 domain code doesn't need to handle missing hooks specially in most cases.

 invoke(name, args \\ [])

Invoke a dynamic hook function by name.
This is used by GameServer.Schedule to call scheduled job callbacks.
Unlike internal_call/3, this is designed for user-defined functions
that are not part of the core lifecycle callbacks.
Returns :ok on success, {:error, reason} on failure or if the
function doesn't exist.

 module()

Return the configured module that implements the hooks behaviour.

GameServer.Hooks.Default

Default no-op implementation for GameServer.Hooks

 Summary

 Functions

 before_kv_get(key, opts)

 Default implementation for before_kv_get/2 — always allow public reads.

 Functions

 before_kv_get(key, opts)

Default implementation for before_kv_get/2 — always allow public reads.

GameServer.Hooks.DynamicRpcs

Runtime registry for dynamic RPC function names exported by hook plugins.
Goal
Allow hook plugins to expose additional callable function names without
defining them as exported Elixir functions (eg. without def my_fn/1).
The intended pattern is:
	Plugin implements after_startup/0 and returns a list of maps describing
which dynamic RPC names should be callable.
	Plugin implements rpc/2 (or rpc/3) to handle these names at runtime.
	GameServer.Hooks.PluginManager.call_rpc/4 falls back to the registry when
the requested function is not exported.

Export format
after_startup/0 may return a list like:
[
 %{hook: "my_dynamic_fn"},
 %{"hook" => "other_fn", "meta" => %{...}}
]
Required:
	hook (string): the callable function name.

Optional:
	meta (map): arbitrary metadata.

Names are validated to contain only letters, digits, and underscores.
Note: this registry is in-memory and is rebuilt on plugin reload.

 Summary

 Types

 export()

 hook_name()

 plugin_name()

 Functions

 allowed?(plugin_name, hook_name)

 ensure_table!()

 list_all()

 lookup(plugin_name, hook_name)

 register_exports(plugin_name, raw)

 reset_all()

 Types

 export()

 @type export() :: %{hook: hook_name(), meta: map()}

 hook_name()

 @type hook_name() :: String.t()

 plugin_name()

 @type plugin_name() :: String.t()

 Functions

 allowed?(plugin_name, hook_name)

 @spec allowed?(plugin_name(), hook_name()) :: boolean()

 ensure_table!()

 @spec ensure_table!() :: :ok

 list_all()

 @spec list_all() :: %{optional(plugin_name()) => [export()]}

 lookup(plugin_name, hook_name)

 @spec lookup(plugin_name(), hook_name()) :: {:ok, export()} | {:error, :not_found}

 register_exports(plugin_name, raw)

 @spec register_exports(plugin_name(), any()) ::
 {:ok, non_neg_integer()} | {:error, term()}

 reset_all()

 @spec reset_all() :: :ok

GameServer.Hooks.PluginBuilder

Builds an OTP plugin bundle from plugin source code on disk.
This is intended for admin-only workflows in development/self-hosted setups.
It runs mix commands on the server host/container.

 Summary

 Types

 build_result()

 step_result()

 Functions

 build(plugin_name)

 list_buildable_plugins()

 sources_dir()

 Types

 build_result()

 @type build_result() :: %{
 ok?: boolean(),
 plugin: String.t(),
 source_dir: String.t(),
 started_at: DateTime.t(),
 finished_at: DateTime.t(),
 steps: [step_result()]
}

 step_result()

 @type step_result() :: %{
 cmd: String.t(),
 status: non_neg_integer(),
 output: String.t()
}

 Functions

 build(plugin_name)

 @spec build(String.t()) :: {:ok, build_result()} | {:error, term()}

 list_buildable_plugins()

 @spec list_buildable_plugins() :: [String.t()]

 sources_dir()

 @spec sources_dir() :: String.t()

GameServer.Hooks.PluginManager

Loads and manages hook plugins shipped as OTP applications under modules/plugins/*.
Each plugin is expected to be a directory named after the OTP app name (e.g. polyglot_hook)
containing:
modules/plugins/polyglot_hook/
 ebin/polyglot_hook.app
 ebin/Elixir.GameServer.Modules.PolyglotHook.beam
 deps/*/ebin/*.beam
The plugin's .app env must include the key :hooks_module, whose value is either a
charlist or string module name like 'Elixir.GameServer.Modules.PolyglotHook'.
This manager is intentionally dependency-free: it only adds ebin directories to the code
path and uses Application.load/1 + Application.ensure_all_started/1.

 Summary

 Types

 plugin_app()

 plugin_name()

 Functions

 call_rpc(plugin, fn_name, args, opts \\ [])

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 hook_modules()

 list()

 lookup(name)

 plugins_dir()

 reload()

 reload_and_after_startup()

 start_link(opts \\ [])

 Types

 plugin_app()

 @type plugin_app() :: atom()

 plugin_name()

 @type plugin_name() :: String.t()

 Functions

 call_rpc(plugin, fn_name, args, opts \\ [])

 @spec call_rpc(plugin_name(), String.t(), list(), keyword()) ::
 {:ok, any()} | {:error, term()}

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 hook_modules()

 @spec hook_modules() :: [{plugin_name(), module()}]

 list()

 @spec list() :: [GameServer.Hooks.PluginManager.Plugin.t()]

 lookup(name)

 @spec lookup(plugin_name()) ::
 {:ok, GameServer.Hooks.PluginManager.Plugin.t()} | {:error, term()}

 plugins_dir()

 @spec plugins_dir() :: String.t()

 reload()

 @spec reload() :: [GameServer.Hooks.PluginManager.Plugin.t()]

 reload_and_after_startup()

 @spec reload_and_after_startup() :: %{
 plugins: [GameServer.Hooks.PluginManager.Plugin.t()],
 after_startup: map()
}

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

GameServer.Hooks.PluginManager.Plugin

A loaded plugin descriptor.
This is a runtime struct used by GameServer.Hooks.PluginManager to report which
plugins were discovered and whether they successfully loaded and started.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %GameServer.Hooks.PluginManager.Plugin{
 app: atom(),
 ebin_paths: [String.t()],
 hooks_module: module() | nil,
 loaded_at: DateTime.t() | nil,
 modules: [module()],
 name: String.t(),
 status: :ok | {:error, term()},
 vsn: String.t() | nil
}

GameServer.KV

Generic key/value storage.
This is intentionally minimal and un-opinionated.
If you want namespacing, encode it in key (e.g. "polyglot_pirates:key1").
If you want per-user values, pass user_id: ... to get/2, put/4, and delete/2.
This module uses the app cache (GameServer.Cache) as a best-effort read cache.
Writes update the cache and deletes evict it.

 Summary

 Types

 attrs()

 Attributes used when creating or updating entries.

 list_opts()

 Options accepted by list_entries/1 and count_entries/1.

 metadata()

 Metadata stored alongside a value. Typically a small map with auxiliary fields.

 payload()

 Payload returned by get/1 and get/2.

 value()

 Value stored for a key. This is an arbitrary map and should contain JSON-serializable data.

 Functions

 count_entries(opts \\ [])

 Count the number of entries that match the optional filter.

 create_entry(attrs)

 Create a new Entry from attrs (expecting key, optional user_id, value, metadata).
Returns {:ok, entry} or {:error, changeset}.

 delete(key, opts \\ [])

 Delete the entry at key.

 delete_entry(id)

 Delete an entry by its id.

 get(key, opts \\ [])

 Retrieve the value and metadata stored for key.

 get_entry(id)

 Fetch an Entry by its numeric id.
Returns the Entry struct or nil if not found.

 list_entries(opts \\ [])

 List key/value entries with optional pagination and filtering.

 put(key, value, metadata \\ %{})

 put(key, value, metadata, opts)

 Store value with optional metadata at key.

 update_entry(id, attrs)

 Update an existing entry by id with attrs.
Returns {:ok, entry}, {:error, :not_found} if missing, or {:error, changeset} on validation error.

 Types

 attrs()

 @type attrs() :: %{
 :key => String.t(),
 optional(:user_id) => pos_integer(),
 :value => value(),
 optional(:metadata) => metadata()
}

Attributes used when creating or updating entries.
Expected keys (atom keys recommended):
	:key — the entry key (String.t())
	:user_id — optional user id (pos_integer())
	:value — the stored value (value())
	:metadata — optional metadata (metadata())

 list_opts()

 @type list_opts() :: [
 page: pos_integer(),
 page_size: pos_integer(),
 user_id: pos_integer(),
 global_only: boolean(),
 key: String.t()
]

Options accepted by list_entries/1 and count_entries/1.
Keys (all optional):
	:page — page number (pos_integer(), defaults to 1)
	:page_size — page size (pos_integer(), defaults to 50)
	:user_id — filter by user id (pos_integer())
	:global_only — when true, only return global entries (where user_id is nil) (boolean())
	:key — substring filter (String.t())

 metadata()

 @type metadata() :: map()

Metadata stored alongside a value. Typically a small map with auxiliary fields.

 payload()

 @type payload() :: %{value: value(), metadata: metadata()}

Payload returned by get/1 and get/2.

 value()

 @type value() :: map()

Value stored for a key. This is an arbitrary map and should contain JSON-serializable data.

 Functions

 count_entries(opts \\ [])

 @spec count_entries(list_opts()) :: non_neg_integer()

Count the number of entries that match the optional filter.
Accepts the same options as list_entries/1 (see list_opts/0). Returns a non-negative integer.

 create_entry(attrs)

 @spec create_entry(attrs()) ::
 {:ok, GameServer.KV.Entry.t()} | {:error, Ecto.Changeset.t()}

Create a new Entry from attrs (expecting key, optional user_id, value, metadata).
Returns {:ok, entry} or {:error, changeset}.

 delete(key, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok

Delete the entry at key.
Pass user_id: id in opts to delete a per-user key. Returns :ok.

 delete_entry(id)

 @spec delete_entry(pos_integer()) :: :ok

Delete an entry by its id.
Returns :ok whether or not the entry existed.

 get(key, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, payload()} | :error

Retrieve the value and metadata stored for key.
Pass user_id: id in opts to scope the lookup to a specific user.
Returns {:ok, %{value: map(), metadata: map()}} when found, or :error when not present.

 get_entry(id)

 @spec get_entry(pos_integer()) :: GameServer.KV.Entry.t() | nil

Fetch an Entry by its numeric id.
Returns the Entry struct or nil if not found.

 list_entries(opts \\ [])

 @spec list_entries(list_opts()) :: [GameServer.KV.Entry.t()]

List key/value entries with optional pagination and filtering.
Supported options: :page, :page_size, :user_id, :global_only, and :key (substring filter).
See list_opts/0 for the expected option types.
Returns a list of Entry structs ordered by most recently updated.

 put(key, value, metadata \\ %{})

 @spec put(String.t(), value(), metadata()) ::
 {:ok, GameServer.KV.Entry.t()} | {:error, Ecto.Changeset.t()}

 put(key, value, metadata, opts)

 @spec put(String.t(), value(), metadata(), list_opts()) ::
 {:ok, GameServer.KV.Entry.t()} | {:error, Ecto.Changeset.t()}

Store value with optional metadata at key.
When using the 4-arity, supported options include user_id: id to scope the entry to a user.
Returns {:ok, entry} on success or {:error, changeset} on validation failure.

 update_entry(id, attrs)

 @spec update_entry(pos_integer(), attrs()) ::
 {:ok, GameServer.KV.Entry.t()}
 | {:error, :not_found}
 | {:error, Ecto.Changeset.t()}

Update an existing entry by id with attrs.
Returns {:ok, entry}, {:error, :not_found} if missing, or {:error, changeset} on validation error.

GameServer.Leaderboards

The Leaderboards context.
Provides server-authoritative leaderboard management. Scores can only be
submitted via server-side code — there is no public API for score submission.
Usage
Create a leaderboard
{:ok, lb} = Leaderboards.create_leaderboard(%{
 slug: "weekly_kills",
 title: "Weekly Kills",
 sort_order: :desc,
 operator: :incr
})

Submit score (server-only): resolve the active leaderboard first and submit by integer ID
leaderboard = Leaderboards.get_active_leaderboard_by_slug("weekly_kills")
{:ok, record} = Leaderboards.submit_score(leaderboard.id, user_id, 10)

List records with rank (use integer leaderboard id)
records = Leaderboards.list_records(leaderboard.id, page: 1, limit: 25)

Get user's record (use integer leaderboard id)
{:ok, record} = Leaderboards.get_user_record(leaderboard.id, user_id)

 Summary

 Functions

 change_leaderboard(leaderboard, attrs \\ %{})

 Returns a changeset for a leaderboard (used in forms).

 change_record(record, attrs \\ %{})

 Returns a changeset for a record (used in admin forms).

 count_all_records()

 Count all leaderboard records across all leaderboards.

 count_leaderboard_groups()

 Counts unique leaderboard slugs.

 count_leaderboards(opts \\ [])

 Counts leaderboards matching the given filters.

 count_records(leaderboard_id)

 Counts records for a leaderboard.

 create_leaderboard(attrs)

 Creates a new leaderboard.

 delete_leaderboard(leaderboard)

 Deletes a leaderboard and all its records.

 delete_record(record)

 Deletes a record.

 delete_user_record(id_or_slug, user_id)

 Deletes a user's record from a leaderboard.
Accepts either leaderboard ID (integer) or slug (string).

 end_leaderboard(leaderboard)

 Ends a leaderboard by setting ends_at to the current time.

 get_active_leaderboard_by_slug(slug)

 Gets the currently active leaderboard with the given slug.
Returns nil if no active leaderboard exists.

 get_leaderboard(id)

 Gets a leaderboard by its integer ID.

 get_leaderboard!(id)

 Gets a leaderboard by its integer ID. Raises if not found.

 get_record(leaderboard_id, user_id)

 Gets a single record by leaderboard ID and user ID.

 get_record!(id)

 Gets a record by its integer ID. Raises if not found.

 get_user_record(leaderboard_id, user_id)

 Gets a user's record with their rank.
Returns {:ok, record_with_rank} or {:error, :not_found}.

 list_leaderboard_groups(opts \\ [])

 Lists unique leaderboard slugs with summary info.

 list_leaderboards(opts \\ [])

 Lists leaderboards with optional filters.

 list_leaderboards_by_slug(slug, opts \\ [])

 Lists all leaderboards with the given slug (all seasons), ordered by end date.

 list_records(leaderboard_id, opts \\ [])

 Lists records for a leaderboard, ordered by rank.

 list_records_around_user(leaderboard_id, user_id, opts \\ [])

 Lists records around a specific user (centered on their position).

 submit_score(leaderboard_id, user_id, score, metadata \\ %{})

 Submits a score for a user on a leaderboard.

 update_leaderboard(leaderboard, attrs)

 Updates an existing leaderboard.

 update_record(record, attrs)

 Updates an existing record.

 Functions

 change_leaderboard(leaderboard, attrs \\ %{})

 @spec change_leaderboard(GameServer.Leaderboards.Leaderboard.t(), map()) ::
 Ecto.Changeset.t()

Returns a changeset for a leaderboard (used in forms).

 change_record(record, attrs \\ %{})

 @spec change_record(GameServer.Leaderboards.Record.t(), map()) :: Ecto.Changeset.t()

Returns a changeset for a record (used in admin forms).

 count_all_records()

 @spec count_all_records() :: non_neg_integer()

Count all leaderboard records across all leaderboards.

 count_leaderboard_groups()

 @spec count_leaderboard_groups() :: non_neg_integer()

Counts unique leaderboard slugs.

 count_leaderboards(opts \\ [])

 @spec count_leaderboards(keyword()) :: non_neg_integer()

Counts leaderboards matching the given filters.
Accepts the same filter options as list_leaderboards/1.

 count_records(leaderboard_id)

 @spec count_records(integer()) :: non_neg_integer()

Counts records for a leaderboard.

 create_leaderboard(attrs)

 @spec create_leaderboard(GameServer.Types.leaderboard_create_attrs()) ::
 {:ok, GameServer.Leaderboards.Leaderboard.t()} | {:error, Ecto.Changeset.t()}

Creates a new leaderboard.
Attributes
See GameServer.Types.leaderboard_create_attrs/0 for available fields.
Examples
iex> create_leaderboard(%{slug: "my_lb", title: "My Leaderboard"})
{:ok, %Leaderboard{}}

iex> create_leaderboard(%{slug: "", title: ""})
{:error, %Ecto.Changeset{}}

 delete_leaderboard(leaderboard)

 @spec delete_leaderboard(GameServer.Leaderboards.Leaderboard.t()) ::
 {:ok, GameServer.Leaderboards.Leaderboard.t()} | {:error, Ecto.Changeset.t()}

Deletes a leaderboard and all its records.

 delete_record(record)

 @spec delete_record(GameServer.Leaderboards.Record.t()) ::
 {:ok, GameServer.Leaderboards.Record.t()} | {:error, Ecto.Changeset.t()}

Deletes a record.

 delete_user_record(id_or_slug, user_id)

 @spec delete_user_record(integer() | String.t(), integer()) ::
 {:ok, GameServer.Leaderboards.Record.t()} | {:error, :not_found}

Deletes a user's record from a leaderboard.
Accepts either leaderboard ID (integer) or slug (string).

 end_leaderboard(leaderboard)

 @spec end_leaderboard(
 GameServer.Leaderboards.Leaderboard.t()
 | integer()
 | String.t()
) ::
 {:ok, GameServer.Leaderboards.Leaderboard.t()}
 | {:error, Ecto.Changeset.t() | :not_found}

Ends a leaderboard by setting ends_at to the current time.

 get_active_leaderboard_by_slug(slug)

 @spec get_active_leaderboard_by_slug(String.t()) ::
 GameServer.Leaderboards.Leaderboard.t() | nil

Gets the currently active leaderboard with the given slug.
Returns nil if no active leaderboard exists.
An active leaderboard is one that:
	Has not ended (ends_at is nil or in the future)
	Has started (starts_at is nil or in the past)

If multiple active leaderboards exist with the same slug,
returns the most recently created one.

 get_leaderboard(id)

 @spec get_leaderboard(integer() | String.t()) ::
 GameServer.Leaderboards.Leaderboard.t() | nil

Gets a leaderboard by its integer ID.
Examples
iex> get_leaderboard(123)
%Leaderboard{id: 123}

iex> get_leaderboard(999)
nil

 get_leaderboard!(id)

 @spec get_leaderboard!(integer()) :: GameServer.Leaderboards.Leaderboard.t()

Gets a leaderboard by its integer ID. Raises if not found.

 get_record(leaderboard_id, user_id)

 @spec get_record(integer(), integer()) :: GameServer.Leaderboards.Record.t() | nil

Gets a single record by leaderboard ID and user ID.

 get_record!(id)

 @spec get_record!(integer()) :: GameServer.Leaderboards.Record.t()

Gets a record by its integer ID. Raises if not found.
Intended for internal/admin usage.

 get_user_record(leaderboard_id, user_id)

 @spec get_user_record(integer(), integer()) ::
 {:ok, GameServer.Leaderboards.Record.t()} | {:error, :not_found}

Gets a user's record with their rank.
Returns {:ok, record_with_rank} or {:error, :not_found}.

 list_leaderboard_groups(opts \\ [])

 @spec list_leaderboard_groups(keyword()) :: [map()]

Lists unique leaderboard slugs with summary info.
Returns a list of maps with:
	:slug - the leaderboard slug
	:title - title from the latest leaderboard
	:description - description from the latest leaderboard
	:active_id - ID of the currently active leaderboard (or nil)
	:latest_id - ID of the most recent leaderboard
	:season_count - total number of leaderboards with this slug

 list_leaderboards(opts \\ [])

 @spec list_leaderboards(keyword()) :: [GameServer.Leaderboards.Leaderboard.t()]

Lists leaderboards with optional filters.
Options
	:slug - Filter by slug (returns all seasons of that leaderboard)
	:active - If true, only active leaderboards. If false, only ended.
	:order_by - Order by field: :ends_at or :inserted_at (default)
	:starts_after - Only leaderboards that started after this DateTime
	:starts_before - Only leaderboards that started before this DateTime
	:ends_after - Only leaderboards that end after this DateTime
	:ends_before - Only leaderboards that end before this DateTime
	:page - Page number (default 1)
	:page_size - Page size (default 25)

Examples
iex> list_leaderboards(active: true)
[%Leaderboard{}, ...]

iex> list_leaderboards(slug: "weekly_kills")
[%Leaderboard{}, ...]

iex> list_leaderboards(starts_after: ~U[2025-01-01 00:00:00Z])
[%Leaderboard{}, ...]

 list_leaderboards_by_slug(slug, opts \\ [])

 @spec list_leaderboards_by_slug(
 String.t(),
 keyword()
) :: [GameServer.Leaderboards.Leaderboard.t()]

Lists all leaderboards with the given slug (all seasons), ordered by end date.

 list_records(leaderboard_id, opts \\ [])

 @spec list_records(integer(), GameServer.Types.pagination_opts()) :: [
 GameServer.Leaderboards.Record.t()
]

Lists records for a leaderboard, ordered by rank.
Options
See GameServer.Types.pagination_opts/0 for available options.
Returns records with rank field populated.

 list_records_around_user(leaderboard_id, user_id, opts \\ [])

 @spec list_records_around_user(integer(), integer(), keyword()) :: [
 GameServer.Leaderboards.Record.t()
]

Lists records around a specific user (centered on their position).
Returns records above and below the user's rank.
Options
	:limit - Total number of records to return (default 11, centered on user)

 submit_score(leaderboard_id, user_id, score, metadata \\ %{})

 @spec submit_score(integer(), integer(), integer(), map()) ::
 {:ok, GameServer.Leaderboards.Record.t()} | {:error, term()}

Submits a score for a user on a leaderboard.
This is a server-only function — there is no public API for score submission.
The score is processed according to the leaderboard's operator:
	:set — Always replace with new score
	:best — Only update if new score is better (respects sort_order)
	:incr — Add to existing score
	:decr — Subtract from existing score

To submit to a leaderboard by slug, first get the active leaderboard ID:
leaderboard = Leaderboards.get_active_leaderboard_by_slug("weekly_kills")
Leaderboards.submit_score(leaderboard.id, user_id, 10)
Examples
iex> submit_score(123, user_id, 10)
{:ok, %Record{score: 10}}

iex> submit_score(123, user_id, 5, %{weapon: "sword"})
{:ok, %Record{score: 15, metadata: %{weapon: "sword"}}}

 update_leaderboard(leaderboard, attrs)

 @spec update_leaderboard(
 GameServer.Leaderboards.Leaderboard.t(),
 GameServer.Types.leaderboard_update_attrs()
) ::
 {:ok, GameServer.Leaderboards.Leaderboard.t()} | {:error, Ecto.Changeset.t()}

Updates an existing leaderboard.
Note: slug, sort_order, and operator cannot be changed after creation.
Attributes
See GameServer.Types.leaderboard_update_attrs/0 for available fields.

 update_record(record, attrs)

 @spec update_record(GameServer.Leaderboards.Record.t(), map()) ::
 {:ok, GameServer.Leaderboards.Record.t()} | {:error, Ecto.Changeset.t()}

Updates an existing record.
Intended for internal/admin usage.

GameServer.Leaderboards.Leaderboard

Ecto schema for the leaderboards table.
A leaderboard is a self-contained scoreboard that can be permanent or time-limited.
Each leaderboard has its own settings for sort order and score operator.
Slug
The slug is a human-readable identifier (e.g., "weekly_kills") that can be reused
across multiple leaderboard instances (seasons). Use the slug to always target the
currently active leaderboard, or use the integer id for a specific instance.
Sort Order
	:desc — Higher scores rank first (default)
	:asc — Lower scores rank first (e.g., fastest time)

Operators
	:set — Always replace with new score
	:best — Only update if new score is better (default)
	:incr — Add to existing score
	:decr — Subtract from existing score

 Summary

 Types

 operator()

 sort_order()

 t()

 Functions

 active?(leaderboard)

 Returns true if the leaderboard is currently active (not ended).

 changeset(leaderboard, attrs)

 Changeset for creating a new leaderboard.

 ended?(lb)

 Returns true if the leaderboard has ended.

 update_changeset(leaderboard, attrs)

 Changeset for updating an existing leaderboard.
Does not allow changing slug, sort_order, or operator after creation.

 Types

 operator()

 @type operator() :: :set | :best | :incr | :decr

 sort_order()

 @type sort_order() :: :desc | :asc

 t()

 @type t() :: %GameServer.Leaderboards.Leaderboard{
 __meta__: term(),
 description: term(),
 ends_at: term(),
 id: term(),
 inserted_at: term(),
 metadata: term(),
 operator: term(),
 records: term(),
 slug: term(),
 sort_order: term(),
 starts_at: term(),
 title: term(),
 updated_at: term()
}

 Functions

 active?(leaderboard)

Returns true if the leaderboard is currently active (not ended).

 changeset(leaderboard, attrs)

Changeset for creating a new leaderboard.

 ended?(lb)

Returns true if the leaderboard has ended.

 update_changeset(leaderboard, attrs)

Changeset for updating an existing leaderboard.
Does not allow changing slug, sort_order, or operator after creation.

GameServer.Leaderboards.Record

Ecto schema for the leaderboard_records table.
A record represents a single user's score entry in a leaderboard.
Each user can have at most one record per leaderboard.

 Summary

 Types

 t()

 Functions

 changeset(record, attrs)

 Changeset for creating a new record.

 update_changeset(record, attrs)

 Changeset for updating an existing record's score.

 Types

 t()

 @type t() :: %GameServer.Leaderboards.Record{
 __meta__: term(),
 id: term(),
 inserted_at: term(),
 leaderboard: term(),
 leaderboard_id: term(),
 metadata: term(),
 rank: term(),
 score: term(),
 updated_at: term(),
 user: term(),
 user_id: term()
}

 Functions

 changeset(record, attrs)

Changeset for creating a new record.

 update_changeset(record, attrs)

Changeset for updating an existing record's score.

GameServer.Lobbies

Context module for lobby management: creating, updating, listing and searching lobbies.
This module contains the core domain operations; more advanced membership and
permission logic will be added in follow-up tasks.
Usage
Create a lobby (returns {:ok, lobby} | {:error, changeset})
{:ok, lobby} = GameServer.Lobbies.create_lobby(%{name: "fun-room", title: "Fun Room", host_id: host_id})

List public lobbies (paginated/filterable)
lobbies = GameServer.Lobbies.list_lobbies(%{}, page: 1, page_size: 25)

Join and leave
{:ok, user} = GameServer.Lobbies.join_lobby(user, lobby.id)
{:ok, _} = GameServer.Lobbies.leave_lobby(user)

Get current lobby members
members = GameServer.Lobbies.get_lobby_members(lobby)

Subscribe to global or per-lobby events
:ok = GameServer.Lobbies.subscribe_lobbies()
:ok = GameServer.Lobbies.subscribe_lobby(lobby.id)
PubSub Events
This module broadcasts the following events:
	"lobbies" topic (global lobby list changes):
	{:lobby_created, lobby} - a new lobby was created
	{:lobby_updated, lobby} - a lobby was updated
	{:lobby_deleted, lobby_id} - a lobby was deleted

	"lobby:<lobby_id>" topic (per-lobby membership changes):
	{:user_joined, lobby_id, user_id} - a user joined the lobby
	{:user_left, lobby_id, user_id} - a user left the lobby
	{:user_kicked, lobby_id, user_id} - a user was kicked from the lobby
	{:lobby_updated, lobby} - the lobby settings were updated
	{:host_changed, lobby_id, new_host_id} - the host changed (e.g., after host leaves)

 Summary

 Functions

 can_edit_lobby?(arg1, lobby)

 Check if a user can edit a lobby (is host or lobby is hostless).

 can_view_lobby?(user, lobby)

 Check if a user can view a lobby's details.
Users can view any lobby they can see in the list.

 change_lobby(lobby, attrs \\ %{})

 count_hidden_lobbies()

 Returns the count of hidden lobbies.

 count_hostless_lobbies()

 Returns the count of hostless lobbies.

 count_list_all_lobbies(filters \\ %{})

 Count ALL lobbies matching filters. For admin pagination.

 count_list_lobbies(filters \\ %{})

 Count lobbies matching filters (excludes hidden ones unless admin list used). If metadata filters are supplied, they will be applied after fetching.

 count_locked_lobbies()

 Returns the count of locked lobbies.

 count_passworded_lobbies()

 Returns the count of lobbies with passwords.

 create_lobby(attrs \\ %{})

 Creates a new lobby.

 create_membership(attrs)

 delete_lobby(lobby)

 delete_membership(user)

 get_lobby(id)

 get_lobby!(id)

 get_lobby_members(lobby_id)

 Gets all users currently in a lobby.

 join_lobby(user, lobby_arg, opts \\ %{})

 kick_user(arg1, lobby, arg3)

 Kick a user from a lobby. Only the host can kick users.
Returns {:ok, user} on success, {:error, reason} on failure.

 leave_lobby(user)

 list_all_lobbies(filters \\ %{}, opts \\ [])

 List ALL lobbies including hidden ones. For admin use only.
Accepts filters: %{
 title: string,
 is_hidden: boolean/string,
 is_locked: boolean/string,
 has_password: boolean/string,
 min_users: integer (filter by max_users >= val),
 max_users: integer (filter by max_users <= val)
}

 list_lobbies(filters \\ %{}, opts \\ [])

 List lobbies. Accepts optional search filters.

 list_lobbies_for_user(user, filters \\ %{}, opts \\ [])

 List lobbies visible to a specific user.
Includes the user's own lobby even if it's hidden.

 list_memberships_for_lobby(lobby_id)

 quick_join(user, title \\ nil, max_users \\ nil, metadata \\ %{})

 Attempt to find an open lobby matching the given criteria and join it, or
create a new lobby if none matches.

 subscribe_lobbies()

 Subscribe to global lobby events (lobby created, updated, deleted).

 subscribe_lobby(lobby_id)

 Subscribe to a specific lobby's events (membership changes, updates).

 unsubscribe_lobby(lobby_id)

 Unsubscribe from a specific lobby's events.

 update_lobby(lobby, attrs)

 Updates an existing lobby.

 update_lobby_by_host(user, lobby, attrs)

 Functions

 can_edit_lobby?(arg1, lobby)

 @spec can_edit_lobby?(
 GameServer.Accounts.User.t() | nil,
 GameServer.Lobbies.Lobby.t() | nil
) ::
 boolean()

Check if a user can edit a lobby (is host or lobby is hostless).

 can_view_lobby?(user, lobby)

 @spec can_view_lobby?(
 GameServer.Accounts.User.t() | nil,
 GameServer.Lobbies.Lobby.t() | nil
) ::
 boolean()

Check if a user can view a lobby's details.
Users can view any lobby they can see in the list.

 change_lobby(lobby, attrs \\ %{})

 @spec change_lobby(GameServer.Lobbies.Lobby.t(), map()) :: Ecto.Changeset.t()

 count_hidden_lobbies()

 @spec count_hidden_lobbies() :: non_neg_integer()

Returns the count of hidden lobbies.

 count_hostless_lobbies()

 @spec count_hostless_lobbies() :: non_neg_integer()

Returns the count of hostless lobbies.

 count_list_all_lobbies(filters \\ %{})

 @spec count_list_all_lobbies(map()) :: non_neg_integer()

Count ALL lobbies matching filters. For admin pagination.

 count_list_lobbies(filters \\ %{})

 @spec count_list_lobbies(map()) :: non_neg_integer()

Count lobbies matching filters (excludes hidden ones unless admin list used). If metadata filters are supplied, they will be applied after fetching.

 count_locked_lobbies()

 @spec count_locked_lobbies() :: non_neg_integer()

Returns the count of locked lobbies.

 count_passworded_lobbies()

 @spec count_passworded_lobbies() :: non_neg_integer()

Returns the count of lobbies with passwords.

 create_lobby(attrs \\ %{})

 @spec create_lobby(GameServer.Types.lobby_create_attrs()) ::
 {:ok, GameServer.Lobbies.Lobby.t()} | {:error, Ecto.Changeset.t() | term()}

Creates a new lobby.
Attributes
See GameServer.Types.lobby_create_attrs/0 for available fields.

 create_membership(attrs)

 @spec create_membership(%{lobby_id: integer(), user_id: integer()}) ::
 {:ok, GameServer.Accounts.User.t()}
 | {:error, :not_found | Ecto.Changeset.t() | term()}

 delete_lobby(lobby)

 @spec delete_lobby(GameServer.Lobbies.Lobby.t()) ::
 {:ok, GameServer.Lobbies.Lobby.t()} | {:error, Ecto.Changeset.t() | term()}

 delete_membership(user)

 @spec delete_membership(GameServer.Accounts.User.t()) ::
 {:ok, GameServer.Accounts.User.t()} | {:error, Ecto.Changeset.t()}

 get_lobby(id)

 @spec get_lobby(integer()) :: GameServer.Lobbies.Lobby.t() | nil

 get_lobby!(id)

 @spec get_lobby!(integer()) :: GameServer.Lobbies.Lobby.t()

 get_lobby_members(lobby_id)

 @spec get_lobby_members(GameServer.Lobbies.Lobby.t() | integer() | String.t()) :: [
 GameServer.Accounts.User.t()
]

Gets all users currently in a lobby.
Returns a list of User structs.
Examples
iex> get_lobby_members(lobby)
[%User{}, %User{}]

iex> get_lobby_members(lobby_id)
[%User{}]

 join_lobby(user, lobby_arg, opts \\ %{})

 @spec join_lobby(
 GameServer.Accounts.User.t(),
 GameServer.Lobbies.Lobby.t() | integer() | String.t(),
 map() | keyword()
) :: {:ok, GameServer.Accounts.User.t()} | {:error, term()}

 kick_user(arg1, lobby, arg3)

 @spec kick_user(
 GameServer.Accounts.User.t(),
 GameServer.Lobbies.Lobby.t(),
 GameServer.Accounts.User.t()
) :: {:ok, GameServer.Accounts.User.t()} | {:error, term()}

Kick a user from a lobby. Only the host can kick users.
Returns {:ok, user} on success, {:error, reason} on failure.

 leave_lobby(user)

 @spec leave_lobby(GameServer.Accounts.User.t()) :: {:ok, term()} | {:error, term()}

 list_all_lobbies(filters \\ %{}, opts \\ [])

 @spec list_all_lobbies(map(), GameServer.Types.pagination_opts()) :: [
 GameServer.Lobbies.Lobby.t()
]

List ALL lobbies including hidden ones. For admin use only.
Accepts filters: %{
 title: string,
 is_hidden: boolean/string,
 is_locked: boolean/string,
 has_password: boolean/string,
 min_users: integer (filter by max_users >= val),
 max_users: integer (filter by max_users <= val)
}

 list_lobbies(filters \\ %{}, opts \\ [])

 @spec list_lobbies(map(), GameServer.Types.lobby_list_opts()) :: [
 GameServer.Lobbies.Lobby.t()
]

List lobbies. Accepts optional search filters.
Filters
	:title - Filter by title (partial match)
	:is_passworded - boolean or string 'true'/'false' (omit for any)
	:is_locked - boolean or string 'true'/'false' (omit for any)
	:min_users - Filter lobbies with max_users >= value
	:max_users - Filter lobbies with max_users <= value
	:metadata_key - Filter by metadata key
	:metadata_value - Filter by metadata value (requires metadata_key)

Options
See GameServer.Types.lobby_list_opts/0 for available options.

 list_lobbies_for_user(user, filters \\ %{}, opts \\ [])

 @spec list_lobbies_for_user(
 GameServer.Accounts.User.t() | nil,
 map(),
 GameServer.Types.lobby_list_opts()
) :: [GameServer.Lobbies.Lobby.t()]

List lobbies visible to a specific user.
Includes the user's own lobby even if it's hidden.

 list_memberships_for_lobby(lobby_id)

 @spec list_memberships_for_lobby(integer() | String.t()) :: [
 GameServer.Accounts.User.t()
]

 quick_join(user, title \\ nil, max_users \\ nil, metadata \\ %{})

 @spec quick_join(
 GameServer.Accounts.User.t(),
 String.t() | nil,
 integer() | nil,
 map()
) ::
 {:ok, GameServer.Lobbies.Lobby.t()}
 | {:error, :already_in_lobby | Ecto.Changeset.t() | term()}

Attempt to find an open lobby matching the given criteria and join it, or
create a new lobby if none matches.
Signature: quick_join(user, title \ nil, max_users \ nil, metadata \ %{})
	If the user is already in a lobby returns {:error, :already_in_lobby}
	On successful join or creation returns {:ok, lobby}
	Propagates errors from join or create flows

 subscribe_lobbies()

 @spec subscribe_lobbies() :: :ok | {:error, term()}

Subscribe to global lobby events (lobby created, updated, deleted).

 subscribe_lobby(lobby_id)

 @spec subscribe_lobby(integer()) :: :ok | {:error, term()}

Subscribe to a specific lobby's events (membership changes, updates).

 unsubscribe_lobby(lobby_id)

 @spec unsubscribe_lobby(integer()) :: :ok

Unsubscribe from a specific lobby's events.

 update_lobby(lobby, attrs)

 @spec update_lobby(
 GameServer.Lobbies.Lobby.t(),
 GameServer.Types.lobby_update_attrs()
) ::
 {:ok, GameServer.Lobbies.Lobby.t()} | {:error, Ecto.Changeset.t() | term()}

Updates an existing lobby.
Attributes
See GameServer.Types.lobby_update_attrs/0 for available fields.

 update_lobby_by_host(user, lobby, attrs)

 @spec update_lobby_by_host(
 GameServer.Accounts.User.t(),
 GameServer.Lobbies.Lobby.t(),
 GameServer.Types.lobby_update_attrs()
) ::
 {:ok, GameServer.Lobbies.Lobby.t()}
 | {:error, :not_host | :too_small | Ecto.Changeset.t() | term()}

GameServer.Lobbies.Lobby

Ecto schema for the lobbies table and changeset helpers.
A lobby represents a game room with basic settings (title, host, capacity,
visibility, lock/password and arbitrary metadata).

 Summary

 Types

 t()

 Functions

 changeset(lobby, attrs)

 Types

 t()

 @type t() :: %GameServer.Lobbies.Lobby{
 __meta__: term(),
 host: term(),
 host_id: term(),
 hostless: term(),
 id: term(),
 inserted_at: term(),
 is_hidden: term(),
 is_locked: term(),
 max_users: term(),
 memberships: term(),
 metadata: term(),
 password_hash: term(),
 title: term(),
 updated_at: term(),
 users: term()
}

 Functions

 changeset(lobby, attrs)

GameServer.Mailer

 Summary

 Functions

 deliver(email, config \\ [])

 Delivers an email.

 deliver!(email, config \\ [])

 Delivers an email, raises on error.

 deliver_many(emails, config \\ [])

 Delivers a list of emails.

 Functions

 deliver(email, config \\ [])

 @spec deliver(Swoosh.Email.t(), Keyword.t()) :: {:ok, term()} | {:error, term()}

Delivers an email.
If the email is delivered it returns an {:ok, result} tuple. If it fails,
returns an {:error, error} tuple.

 deliver!(email, config \\ [])

 @spec deliver!(Swoosh.Email.t(), Keyword.t()) :: term() | no_return()

Delivers an email, raises on error.
If the email is delivered, it returns the result. If it fails, it raises
a DeliveryError.

 deliver_many(emails, config \\ [])

 @spec deliver_many(
 [
 %Swoosh.Email{
 assigns: term(),
 attachments: term(),
 bcc: term(),
 cc: term(),
 from: term(),
 headers: term(),
 html_body: term(),
 private: term(),
 provider_options: term(),
 reply_to: term(),
 subject: term(),
 text_body: term(),
 to: term()
 }
],
 Keyword.t()
) :: {:ok, term()} | {:error, term()}

Delivers a list of emails.
It accepts a list of %Swoosh.Email{} as its first parameter.

GameServer.OAuth.Exchanger

Default implementation for exchanging OAuth codes with providers.
This module is intentionally small and works with the Req library.
Tests may replace the exchanger via application config for easier stubbing.

 Summary

 Functions

 exchange_apple_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 exchange_discord_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 exchange_facebook_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 exchange_google_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 exchange_steam_code(code)

 exchange_steam_ticket(ticket, opts \\ [])

 Verify a Steam auth ticket using ISteamUserAuth/AuthenticateUserTicket/v1

 get_player_profile(steamid)

 Fetch a public Steam profile for a given steamid using GetPlayerSummaries.
Returns {:ok, map} or {:error, reason}.

 Functions

 exchange_apple_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 @spec exchange_apple_code(String.t(), String.t(), String.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 exchange_discord_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 @spec exchange_discord_code(String.t(), String.t(), String.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 exchange_facebook_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 @spec exchange_facebook_code(
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, map()} | {:error, term()}

 exchange_google_code(code, client_id, client_secret, redirect_uri, opts \\ [])

 @spec exchange_google_code(String.t(), String.t(), String.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 exchange_steam_code(code)

 @spec exchange_steam_code(String.t()) :: {:ok, map()} | {:error, term()}

 exchange_steam_ticket(ticket, opts \\ [])

 @spec exchange_steam_ticket(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Verify a Steam auth ticket using ISteamUserAuth/AuthenticateUserTicket/v1
Expects a ticket (binary blob) returned by the Steamworks client SDK. Returns
{:ok, user_info} on successful verification or {:error, reason} on failure.

 get_player_profile(steamid)

Fetch a public Steam profile for a given steamid using GetPlayerSummaries.
Returns {:ok, map} or {:error, reason}.

GameServer.OAuth.GoogleIDToken

Verifies Google OpenID Connect id_tokens for native/mobile sign-in flows.
This module uses Google's tokeninfo endpoint to validate the token and
extract the claims required by the server.
It is intentionally separate from the authorization-code exchange flow used
by the web OAuth callbacks.

 Summary

 Types

 claims()

 Functions

 verify(id_token, opts \\ [])

 Types

 claims()

 @type claims() :: map()

 Functions

 verify(id_token, opts \\ [])

 @spec verify(
 String.t(),
 keyword()
) :: {:ok, claims()} | {:error, term()}

GameServer.OAuthSession

Simple Ecto schema for OAuth session polling used by client SDKs.
OAuth sessions allow multi-step auth flows (popup or mobile) where the SDK
polls for completion status (pending/completed/failed). The schema stores
provider-specific data in the data field for debugging and eventing.

 Summary

 Types

 t()

 A short-lived OAuth session used for polling by SDKs.

 Types

 t()

 @type t() :: %GameServer.OAuthSession{
 __meta__: term(),
 data: map(),
 id: integer() | nil,
 inserted_at: term(),
 provider: String.t(),
 session_id: String.t(),
 status: String.t(),
 updated_at: term()
}

A short-lived OAuth session used for polling by SDKs.

GameServer.OAuthSessions

Helpers for creating and retrieving short-lived OAuth sessions.

 Summary

 Functions

 create_session(session_id, attrs \\ %{})

 get_session(session_id)

 update_session(session_id, attrs)

 Functions

 create_session(session_id, attrs \\ %{})

 @spec create_session(String.t(), map()) ::
 {:ok, GameServer.OAuthSession.t()} | {:error, Ecto.Changeset.t()}

 get_session(session_id)

 @spec get_session(String.t()) :: GameServer.OAuthSession.t() | nil

 update_session(session_id, attrs)

 @spec update_session(String.t(), map()) ::
 {:ok, GameServer.OAuthSession.t()} | {:error, Ecto.Changeset.t()} | :not_found

GameServer.Repo

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 Forces all connections in the repo pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

 Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 Runs a custom SQL query.

 query!(sql, params \\ [], opts \\ [])

 Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 Runs a custom SQL query that returns multiple results on the given repo.

 query_many!(sql, params \\ [], opts \\ [])

 Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 Converts the given query to SQL according to its kind and the
adapter in the given repository.

 transact(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Functions

 aggregate(queryable, aggregate, opts \\ [])

Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 @spec disconnect_all(non_neg_integer(), opts :: Keyword.t()) :: :ok

Forces all connections in the repo pool to disconnect within the given interval.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 exists?(queryable, opts \\ [])

Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 @spec explain(
 :all | :update_all | :delete_all,
 Ecto.Queryable.t(),
 opts :: Keyword.t()
) ::
 String.t() | Exception.t() | [map()]

Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.
Examples
Postgres
iex> MyRepo.explain(:all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

iex> Ecto.Adapters.SQL.explain(Repo, :all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

MySQL
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title")) |> IO.puts()
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | p0 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.0 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+

Shared opts
iex> MyRepo.explain(:all, Post, analyze: true, timeout: 20_000)
"Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=443) (actual time=0.013..0.013 rows=0 loops=1)\nPlanning Time: 0.031 ms\nExecution Time: 0.021 ms"
It's safe to execute it for updates and deletes, no data change will be committed:
iex> MyRepo.explain(Repo, :update_all, from(p in Post, update: [set: [title: "new title"]]))
"Update on posts p0 (cost=0.00..11.70 rows=170 width=449)\n -> Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=449)"
This function is also available under the repository with name explain:
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title"))
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)\n Filter: ((title)::text = 'title'::text)"
Options
Built-in adapters support passing opts to the EXPLAIN statement according to the following:
	Adapter	Supported opts
	Postgrex	analyze, verbose, costs, settings, buffers, timing, summary, format, plan, wrap_in_transaction
	MyXQL	format, wrap_in_transaction

All options except format are boolean valued and default to false.
The allowed format values are :map, :yaml, and :text:
	:map is the deserialized JSON encoding.
	:yaml and :text return the result as a string.

The built-in adapters support the following formats:
	Postgrex: :map, :yaml and :text
	MyXQL: :map and :text

The wrap_in_transaction option is a boolean that controls whether the command is run inside of a
transaction that is rolled back. This is useful when, for example, you'd like to use analyze: true
on an update or delete query without modifying data. Defaults to true.
The :plan option in Postgrex can take the values :custom or :fallback_generic. When :custom
is specified, the explain plan generated will consider the specific values of the query parameters
that are supplied. When using :fallback_generic, the specific values of the query parameters will
be ignored. :fallback_generic does not use PostgreSQL's built-in support for a generic explain
plan (available as of PostgreSQL 16), but instead uses a special implementation that works for PostgreSQL
versions 12 and above. Defaults to :custom.
Any other value passed to opts will be forwarded to the underlying adapter query function, including
shared Repo options such as :timeout. Non built-in adapters may have specific behaviour and you should
consult their documentation for more details.
For version compatibility, please check your database's documentation:
	Postgrex: PostgreSQL doc.
	MyXQL: MySQL doc.

 get(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 @spec query(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, Ecto.Adapters.SQL.query_result()} | {:error, Exception.t()}

Runs a custom SQL query.
If the query was successful, it will return an :ok tuple containing
a map with at least two keys:
	:num_rows - the number of rows affected
	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query("SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

iex> Ecto.Adapters.SQL.query(MyRepo, "SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

 query!(sql, params \\ [], opts \\ [])

 @spec query!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 Ecto.Adapters.SQL.query_result()

Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 @spec query_many(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, [Ecto.Adapters.SQL.query_result()]} | {:error, Exception.t()}

Runs a custom SQL query that returns multiple results on the given repo.
In case of success, it must return an :ok tuple containing a list of
maps with at least two keys:
	:num_rows - the number of rows affected

	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query_many("SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

iex> Ecto.Adapters.SQL.query_many(MyRepo, "SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

 query_many!(sql, params \\ [], opts \\ [])

 @spec query_many!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) :: [
 Ecto.Adapters.SQL.query_result()
]

Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 @spec to_sql(:all | :update_all | :delete_all, Ecto.Queryable.t()) ::
 {String.t(), Ecto.Adapters.SQL.query_params()}

Converts the given query to SQL according to its kind and the
adapter in the given repository.
Examples
The examples below are meant for reference. Each adapter will
return a different result:
iex> MyRepo.to_sql(:all, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

iex> MyRepo.to_sql(:update_all, from(p in Post, update: [set: [title: ^"hello"]]))
{"UPDATE posts AS p SET title = $1", ["hello"]}

iex> Ecto.Adapters.SQL.to_sql(:all, MyRepo, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

 transact(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

Callback implementation for Ecto.Repo.update_all/3.

GameServer.Schedule

Dynamic cron-like job scheduling for hooks.
Use this module in your after_startup/0 hook to register scheduled jobs
that will call your hook functions at specified intervals.
This module is safe for distributed deployments - only one instance will
execute each job per period using database locks.
Scheduled callbacks are automatically protected from user RPC calls.
Examples
def after_startup do
 # Simple intervals
 Schedule.every_minutes(5, :on_every_5m)
 Schedule.hourly(:on_hourly)
 Schedule.daily(:on_daily)

 # With options
 Schedule.daily(:on_morning_report, hour: 9)
 Schedule.weekly(:on_monday, day: :monday, hour: 10)

 # Full cron syntax
 Schedule.cron(:my_job, "0 */6 * * *", :on_every_6h)

 :ok
end

Callback receives context map (public function, but protected from RPC)
def on_hourly(context) do
 IO.puts("Triggered at #{context.triggered_at}")
 :ok
end
Context
All callbacks receive a context map:
%{
 triggered_at: ~U[2025-12-03 14:00:00Z],
 job_name: :on_hourly,
 schedule: "0 * * * *"
}
Distributed Safety
When running multiple instances, only one will execute each job per period.
This is achieved via database locks in the schedule_locks table.
Old locks are automatically cleaned up after 7 days.

 Summary

 Functions

 cancel(name)

 Cancel a scheduled job.

 cleanup_old_locks(opts \\ [])

 Clean up old schedule locks older than the specified number of days.

 cron(name, cron_expr, hook_fn)

 Register a job with full cron syntax.

 daily(hook_fn, opts \\ [])

 Run a job every day.

 every_minutes(n, hook_fn)

 Run a job every N minutes.

 hourly(hook_fn, opts \\ [])

 Run a job every hour.

 list()

 List all scheduled jobs.

 registered_callbacks()

 Returns the set of callback function names registered for scheduled jobs.

 weekly(hook_fn, opts \\ [])

 Run a job every week.

 Functions

 cancel(name)

 @spec cancel(atom()) :: :ok

Cancel a scheduled job.
Examples
Schedule.cancel(:my_job)

 cleanup_old_locks(opts \\ [])

 @spec cleanup_old_locks(keyword()) :: {:ok, non_neg_integer()}

Clean up old schedule locks older than the specified number of days.
This is called automatically during job execution, but can also be
called manually if needed. Default is 7 days.
Examples
Schedule.cleanup_old_locks()
Schedule.cleanup_old_locks(days: 30)

 cron(name, cron_expr, hook_fn)

 @spec cron(atom(), String.t(), atom()) :: :ok | {:error, term()}

Register a job with full cron syntax.
Examples
Schedule.cron(:my_job, "*/15 * * * *", :on_every_15m)
Schedule.cron(:weekdays, "0 9 * * 1-5", :on_weekday_morning)

 daily(hook_fn, opts \\ [])

 @spec daily(atom(), hour: 0..23, minute: 0..59) :: :ok | {:error, term()}

Run a job every day.
Options
	:hour - hour of the day (0-23), default: 0
	:minute - minute of the hour (0-59), default: 0

Examples
Schedule.daily(:on_midnight)
Schedule.daily(:on_morning, hour: 9)
Schedule.daily(:on_evening, hour: 18, minute: 30)

 every_minutes(n, hook_fn)

 @spec every_minutes(pos_integer(), atom()) :: :ok | {:error, term()}

Run a job every N minutes.
Examples
Schedule.every_minutes(5, :on_5m)
Schedule.every_minutes(15, :on_15m)

 hourly(hook_fn, opts \\ [])

 @spec hourly(atom(), [{:minute, 0..59}]) :: :ok | {:error, term()}

Run a job every hour.
Options
	:minute - minute of the hour (0-59), default: 0

Examples
Schedule.hourly(:on_hourly)
Schedule.hourly(:on_half_hour, minute: 30)

 list()

 @spec list() :: [%{name: atom(), schedule: String.t(), state: term()}]

List all scheduled jobs.
Returns a list of job info maps.

 registered_callbacks()

 @spec registered_callbacks() :: MapSet.t(atom())

Returns the set of callback function names registered for scheduled jobs.
These are protected from user RPC calls via Hooks.call/3.

 weekly(hook_fn, opts \\ [])

 @spec weekly(atom(), day: atom(), hour: 0..23, minute: 0..59) ::
 :ok | {:error, term()}

Run a job every week.
Options
	:day - day of week (:sunday, :monday, etc.), default: :sunday
	:hour - hour of the day (0-23), default: 0
	:minute - minute of the hour (0-59), default: 0

Examples
Schedule.weekly(:on_sunday)
Schedule.weekly(:on_monday_morning, day: :monday, hour: 9)

GameServer.Schedule.Lock

Schema for schedule job locks.
Used to ensure only one instance executes a scheduled job
in a distributed environment.

GameServer.Schedule.Scheduler

Defines a quantum Scheduler.
When used, the quantum scheduler expects the :otp_app as option.
The :otp_app should point to an OTP application that has
the quantum runner configuration. For example, the quantum scheduler:
defmodule GameServer.Schedule.Scheduler do
 use Quantum, otp_app: :game_server_core
end
Could be configured with:
config :game_server_core, GameServer.Schedule.Scheduler,
 jobs: [
 {"@daily", {Backup, :backup, []}},
]
Configuration:
	:clock_broadcaster_name - GenServer name of clock broadcaster
(unstable, may break without major release until declared stable)

	:execution_broadcaster_name - GenServer name of execution broadcaster
(unstable, may break without major release until declared stable)

	:executor_supervisor_name - GenServer name of execution supervisor
(unstable, may break without major release until declared stable)

	:debug_logging - Turn on debug logging

	:jobs - list of cron jobs to execute

	:job_broadcaster_name - GenServer name of job broadcaster
(unstable, may break without major release until declared stable)

	:name - GenServer name of scheduler
(unstable, may break without major release until declared stable)

	:node_selector_broadcaster_name - GenServer name of node selector broadcaster
(unstable, may break without major release until declared stable)

	:overlap - Default overlap of new Job

	:otp_app - Application where scheduler runs

	:run_strategy - Default Run Strategy of new Job

	:schedule - Default schedule of new Job

	:storage - Storage to use for persistence

	:storage_name - GenServer name of storage
(unstable, may break without major release until declared stable)

	:supervisor_module - Module to supervise scheduler
Can be overwritten to supervise processes differently (for example for clustering)
(unstable, may break without major release until declared stable)

	:task_registry_name - GenServer name of task registry
(unstable, may break without major release until declared stable)

	:task_supervisor_name - GenServer name of task supervisor
(unstable, may break without major release until declared stable)

	:timeout - Sometimes, you may come across GenServer timeout errors
esp. when you have too many jobs or high load. The default GenServer.call/3
timeout is 5_000.

	:timezone - Default timezone of new Job

Telemetry
	[:quantum, :job, :add]
	Description: dispatched when a job is added
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :update]
	Description: dispatched when a job is updated
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :delete]
	Description: dispatched when a job is deleted
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :start]
	Description: dispatched on job execution start
	Measurements: %{system_time: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom()}

	[:quantum, :job, :stop]
	Description: dispatched on job execution end
	Measurements: %{duration: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), result: term()}

	[:quantum, :job, :exception]
	Description: dispatched on job execution fail
	Measurements: %{duration: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), kind: :throw | :error | :exit, reason: term(), stacktrace: list()}

Examples
iex(1)> :telemetry_registry.discover_all(:quantum)
:ok
iex(2)> :telemetry_registry.spannable_events()
[{[:quantum, :job], [:start, :stop, :exception]}]
iex(3)> :telemetry_registry.list_events
[
 {[:quantum, :job, :add], Quantum,
 %{
 description: "dispatched when a job is added",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :delete], Quantum,
 %{
 description: "dispatched when a job is deleted",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :exception], Quantum,
 %{
 description: "dispatched on job execution fail",
 measurements: "%{duration: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), kind: :throw | :error | :exit, reason: term(), stacktrace: list()}"
 }},
 {[:quantum, :job, :start], Quantum,
 %{
 description: "dispatched on job execution start",
 measurements: "%{system_time: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :stop], Quantum,
 %{
 description: "dispatched on job execution end",
 measurements: "%{duration: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), result: term()}"
 }},
 {[:quantum, :job, :update], Quantum,
 %{
 description: "dispatched when a job is updated",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }}
]

 Summary

 Functions

 child_spec(opts)

 Functions

 child_spec(opts)

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

GameServer.Theme behaviour

Behaviour for pluggable site theming providers.
Implementations should provide a map-like theme object that the UI
and templates can render from. We ship a small JSON-backed default
implementation that reads a JSON file (see GameServer.Theme.JSONConfig).
Recommended keys in the theme map:
	"title" (string)
	"tagline" (string)
	"css" (string: public path to a CSS file such as "/theme/theme.css")
	"logo" (public URL path)
	"banner" (public URL path)
	"metadata" (map)

 Summary

 Callbacks

 get_setting(key)

 get_theme()

 reload()

 Callbacks

 get_setting(key)

 @callback get_setting(key :: atom() | String.t()) :: any()

 get_theme()

 @callback get_theme() :: map()

 reload()

 @callback reload() :: :ok | {:error, term()}

GameServer.Theme.JSONConfig

JSON-backed Theme provider. Reads a JSON file specified by the THEME_CONFIG
environment variable (single canonical runtime source) — e.g. THEME_CONFIG=theme/custom.json
The path may be relative to the project root (eg. "theme/default_config.json")
or an absolute path. When the file is missing we fall back to the built-in
default at priv/static/theme/default_config.json.
This implementation keeps things simple: every call will parse the JSON file
and return a map. There's also a reload/0 API for callers who want to
force a re-read (not required for normal usage).

 Summary

 Functions

 get_theme(locale)

 Variant of get_theme/0 that prefers a locale-specific THEME_CONFIG file when present.

 packaged_default()

 Return the packaged default theme config found under priv/static/theme/default_config.json
as a map (or an empty map when missing/invalid). This is a convenience wrapper so other
modules can rely on a single source of truth for the packaged defaults.

 runtime_path()

 Returns the runtime THEME_CONFIG path if present and non-blank, otherwise nil.
This function intentionally treats blank env values as unset.

 Functions

 get_theme(locale)

 @spec get_theme(String.t() | nil) :: map()

Variant of get_theme/0 that prefers a locale-specific THEME_CONFIG file when present.
Given a base config like modules/example_config.json and locale "en", we will
try modules/example_config.en.json first (and fall back to the base file).

 packaged_default()

Return the packaged default theme config found under priv/static/theme/default_config.json
as a map (or an empty map when missing/invalid). This is a convenience wrapper so other
modules can rely on a single source of truth for the packaged defaults.

 runtime_path()

Returns the runtime THEME_CONFIG path if present and non-blank, otherwise nil.
This function intentionally treats blank env values as unset.

GameServer.Types

Shared types used across GameServer contexts.
These types provide self-documenting function signatures for common
patterns like pagination options and entity attributes.

 Summary

 Types

 leaderboard_create_attrs()

 Attributes for creating a new leaderboard.

 leaderboard_update_attrs()

 Attributes for updating an existing leaderboard.

 lobby_create_attrs()

 Attributes for creating a new lobby.

 lobby_list_opts()

 Lobby listing options for filtering and pagination.

 lobby_update_attrs()

 Attributes for updating an existing lobby.

 pagination_opts()

 Pagination options for list queries.

 user_registration_attrs()

 Attributes for registering a new user.

 user_update_attrs()

 Attributes for updating an existing user.

 Types

 leaderboard_create_attrs()

 @type leaderboard_create_attrs() :: %{
 :slug => String.t(),
 :title => String.t(),
 optional(:description) => String.t(),
 optional(:sort_order) => :desc | :asc,
 optional(:operator) => :set | :best | :incr | :decr,
 optional(:starts_at) => DateTime.t(),
 optional(:ends_at) => DateTime.t(),
 optional(:metadata) => map()
}

Attributes for creating a new leaderboard.
Fields
	:slug - Human-readable identifier (required, 1-100 chars, lowercase alphanumeric with underscores)
	:title - Display title (required, 1-255 chars)
	:description - Optional description
	:sort_order - :desc (higher is better) or :asc (lower is better). Default: :desc
	:operator - How scores are combined:	:set - Always replace with new score
	:best - Only update if new score is better (default)
	:incr - Add to existing score
	:decr - Subtract from existing score

	:starts_at - Optional start time (UTC)
	:ends_at - Optional end time (UTC)
	:metadata - Arbitrary key-value data

Example
create_leaderboard(%{
 slug: "weekly_kills",
 title: "Weekly Kills",
 sort_order: :desc,
 operator: :incr,
 ends_at: ~U[2024-12-08 00:00:00Z]
})
Note: The same slug can be used for multiple leaderboards (seasons).
When querying by slug, the active leaderboard is returned.

 leaderboard_update_attrs()

 @type leaderboard_update_attrs() :: %{
 optional(:title) => String.t(),
 optional(:description) => String.t(),
 optional(:starts_at) => DateTime.t(),
 optional(:ends_at) => DateTime.t(),
 optional(:metadata) => map()
}

Attributes for updating an existing leaderboard.
Note: slug, sort_order, and operator cannot be changed after creation.
Fields
	:title - Display title (1-255 chars)
	:description - Description text
	:starts_at - Start time (UTC)
	:ends_at - End time (UTC)
	:metadata - Arbitrary key-value data

Example
update_leaderboard(leaderboard, %{
 title: "Updated Title",
 ends_at: ~U[2024-12-15 00:00:00Z]
})

 lobby_create_attrs()

 @type lobby_create_attrs() :: %{
 :name => String.t(),
 :title => String.t(),
 optional(:max_users) => pos_integer(),
 optional(:is_hidden) => boolean(),
 optional(:is_locked) => boolean(),
 optional(:password) => String.t(),
 optional(:hostless) => boolean(),
 optional(:metadata) => map()
}

Attributes for creating a new lobby.
Fields
	:name - Unique identifier/slug (required)
	:title - Display title (required)
	:max_users - Maximum number of users allowed (default: 10)
	:is_hidden - Whether lobby is hidden from public lists (default: false)
	:is_locked - Whether lobby is locked from new joins (default: false)
	:password - Optional password for protected lobbies
	:hostless - Whether lobby can exist without a host (default: false)
	:metadata - Arbitrary key-value data

Example
create_lobby(user, %{
 name: "my-game-room",
 title: "My Game Room",
 max_users: 4,
 password: "secret"
})

 lobby_list_opts()

 @type lobby_list_opts() :: [
 page: pos_integer() | nil,
 page_size: pos_integer(),
 include_hidden: boolean()
]

Lobby listing options for filtering and pagination.
Options
	:page - The page number (1-indexed). Defaults to nil (returns all).
	:page_size - Number of items per page. Defaults to 25.
	:include_hidden - Include hidden lobbies in results. Defaults to false.

Example
List all visible lobbies
list_lobbies([])

List page 1 including hidden lobbies
list_lobbies(page: 1, include_hidden: true)

 lobby_update_attrs()

 @type lobby_update_attrs() :: %{
 optional(:title) => String.t(),
 optional(:max_users) => pos_integer(),
 optional(:is_hidden) => boolean(),
 optional(:is_locked) => boolean(),
 optional(:password) => String.t() | nil,
 optional(:metadata) => map()
}

Attributes for updating an existing lobby.
Fields
	:title - Display title
	:max_users - Maximum number of users allowed
	:is_hidden - Whether lobby is hidden from public lists
	:is_locked - Whether lobby is locked from new joins
	:password - Password for protected lobbies (set to nil to remove)
	:metadata - Arbitrary key-value data

Example
update_lobby(lobby, user, %{
 title: "New Title",
 is_locked: true
})

 pagination_opts()

 @type pagination_opts() :: [page: pos_integer(), page_size: pos_integer()]

Pagination options for list queries.
Options
	:page - The page number (1-indexed). Defaults to 1.
	:page_size - Number of items per page. Defaults to 25.

Example
Get the first page with default size
list_users([])

Get page 2 with 50 items per page
list_users(page: 2, page_size: 50)

 user_registration_attrs()

 @type user_registration_attrs() :: %{
 optional(:email) => String.t(),
 optional(:password) => String.t(),
 optional(:display_name) => String.t(),
 optional(:device_id) => String.t()
}

Attributes for registering a new user.
Fields
	:email - User's email address (required for email registration)
	:password - User's password (required for email registration, min 8 chars)
	:display_name - Optional display name
	:device_id - Optional device ID for anonymous auth

Example
register_user(%{
 email: "user@example.com",
 password: "secret123",
 display_name: "Player One"
})

 user_update_attrs()

 @type user_update_attrs() :: %{
 optional(:display_name) => String.t() | nil,
 optional(:metadata) => map(),
 optional(:is_admin) => boolean()
}

Attributes for updating an existing user.
Fields
	:display_name - User's display name
	:metadata - Arbitrary key-value data stored with the user
	:is_admin - Whether the user has admin privileges

Example
update_user(user, %{
 display_name: "New Name",
 metadata: %{level: 5, xp: 1200}
})

mix gen.sdk

Generates SDK stub modules from the real GameServer modules.
This task reads the real implementations and generates stub modules
for the SDK package with matching type specs and documentation.
Usage
mix gen.sdk
The generated files are placed in sdk/lib/game_server/.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

